Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"University of Texas – Austin" +contributor:("Engquist, Bjorn"). Showing records 1 – 15 of 15 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Texas – Austin

1. Nguyen, Hieu Huu. Parallel-in-time methods for wave propagation in heterogeneous media.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2020, University of Texas – Austin

 Wave propagation is ubiquitous in science and engineering applications, but solving the second-order wave equation in a parallel way is still computationally challenging. Specifically, as… (more)

Subjects/Keywords: Numerical method; Wave propagation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nguyen, H. H. (2020). Parallel-in-time methods for wave propagation in heterogeneous media. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/10151

Chicago Manual of Style (16th Edition):

Nguyen, Hieu Huu. “Parallel-in-time methods for wave propagation in heterogeneous media.” 2020. Doctoral Dissertation, University of Texas – Austin. Accessed April 23, 2021. http://dx.doi.org/10.26153/tsw/10151.

MLA Handbook (7th Edition):

Nguyen, Hieu Huu. “Parallel-in-time methods for wave propagation in heterogeneous media.” 2020. Web. 23 Apr 2021.

Vancouver:

Nguyen HH. Parallel-in-time methods for wave propagation in heterogeneous media. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2020. [cited 2021 Apr 23]. Available from: http://dx.doi.org/10.26153/tsw/10151.

Council of Science Editors:

Nguyen HH. Parallel-in-time methods for wave propagation in heterogeneous media. [Doctoral Dissertation]. University of Texas – Austin; 2020. Available from: http://dx.doi.org/10.26153/tsw/10151


University of Texas – Austin

2. Bello Rivas, Juan Manuel. Iterative milestoning.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2016, University of Texas – Austin

 Computer simulation of matter using Molecular Dynamics (MD) is a staple in the field of Molecular Biophysics. MD yields results suitable for comparison with laboratory… (more)

Subjects/Keywords: Molecular simulation; Dynamical systems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bello Rivas, J. M. (2016). Iterative milestoning. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/45791

Chicago Manual of Style (16th Edition):

Bello Rivas, Juan Manuel. “Iterative milestoning.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed April 23, 2021. http://hdl.handle.net/2152/45791.

MLA Handbook (7th Edition):

Bello Rivas, Juan Manuel. “Iterative milestoning.” 2016. Web. 23 Apr 2021.

Vancouver:

Bello Rivas JM. Iterative milestoning. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2021 Apr 23]. Available from: http://hdl.handle.net/2152/45791.

Council of Science Editors:

Bello Rivas JM. Iterative milestoning. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/45791

3. -1218-7450. Implicit boundary integral methods.

Degree: PhD, Mathematics, 2015, University of Texas – Austin

 Boundary integral methods (BIMs) solve constant coefficient, linear partial differential equations (PDEs) which have been formulated as integral equations. Implicit BIMs (IBIMs) transform these boundary… (more)

Subjects/Keywords: Boundary integral methods; Level set methods; Mullins-Sekerka; Helmholtz equation; Laplace equation; Multiply connected domain; Exterior problem; Differential equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-1218-7450. (2015). Implicit boundary integral methods. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/32830

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-1218-7450. “Implicit boundary integral methods.” 2015. Doctoral Dissertation, University of Texas – Austin. Accessed April 23, 2021. http://hdl.handle.net/2152/32830.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-1218-7450. “Implicit boundary integral methods.” 2015. Web. 23 Apr 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-1218-7450. Implicit boundary integral methods. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2015. [cited 2021 Apr 23]. Available from: http://hdl.handle.net/2152/32830.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-1218-7450. Implicit boundary integral methods. [Doctoral Dissertation]. University of Texas – Austin; 2015. Available from: http://hdl.handle.net/2152/32830

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

4. Neupane, Prapti. Advances towards a multi-dimensional discontinuous Galerkin method for modeling hurricane storm surge induced flooding in coastal watersheds.

Degree: PhD, Computational and applied mathematics, 2016, University of Texas – Austin

 Coastal areas are regions of high population density and urbanization. These areas are highly vulnerable to inundation and flooding not only because of hurricane storm… (more)

Subjects/Keywords: Hurricane storm surge; Rainfall runoff; Flooding; Discontinuous Galerkin method; Computational hydrology; Multi-dimensional model; Shallow water equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Neupane, P. (2016). Advances towards a multi-dimensional discontinuous Galerkin method for modeling hurricane storm surge induced flooding in coastal watersheds. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/41984

Chicago Manual of Style (16th Edition):

Neupane, Prapti. “Advances towards a multi-dimensional discontinuous Galerkin method for modeling hurricane storm surge induced flooding in coastal watersheds.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed April 23, 2021. http://hdl.handle.net/2152/41984.

MLA Handbook (7th Edition):

Neupane, Prapti. “Advances towards a multi-dimensional discontinuous Galerkin method for modeling hurricane storm surge induced flooding in coastal watersheds.” 2016. Web. 23 Apr 2021.

Vancouver:

Neupane P. Advances towards a multi-dimensional discontinuous Galerkin method for modeling hurricane storm surge induced flooding in coastal watersheds. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2021 Apr 23]. Available from: http://hdl.handle.net/2152/41984.

Council of Science Editors:

Neupane P. Advances towards a multi-dimensional discontinuous Galerkin method for modeling hurricane storm surge induced flooding in coastal watersheds. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/41984


University of Texas – Austin

5. -5094-3283. Advanced techniques for multi-source, multi-parameter, and multi-physics inverse problems.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2017, University of Texas – Austin

 With the increase in compute power and the advent of the big data era, inverse problems have grown more complex, attempting to extract more information… (more)

Subjects/Keywords: Multi-parameter; Multi-physics; Multi-source; Inverse problem; Joint inverse problem; Vectorial total variation; Primal-dual Newton method; Optimal experimental design; Bayesian inverse problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-5094-3283. (2017). Advanced techniques for multi-source, multi-parameter, and multi-physics inverse problems. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/63471

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-5094-3283. “Advanced techniques for multi-source, multi-parameter, and multi-physics inverse problems.” 2017. Doctoral Dissertation, University of Texas – Austin. Accessed April 23, 2021. http://hdl.handle.net/2152/63471.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-5094-3283. “Advanced techniques for multi-source, multi-parameter, and multi-physics inverse problems.” 2017. Web. 23 Apr 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-5094-3283. Advanced techniques for multi-source, multi-parameter, and multi-physics inverse problems. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2017. [cited 2021 Apr 23]. Available from: http://hdl.handle.net/2152/63471.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-5094-3283. Advanced techniques for multi-source, multi-parameter, and multi-physics inverse problems. [Doctoral Dissertation]. University of Texas – Austin; 2017. Available from: http://hdl.handle.net/2152/63471

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Texas – Austin

6. Petrides, Socratis. Adaptive multilevel solvers for the discontinuous Petrov–Galerkin method with an emphasis on high-frequency wave propagation problems.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2019, University of Texas – Austin

 This dissertation focuses on the development of fast and efficient solution schemes for the simulation of challenging problems in wave propagation phenomena. In particular, emphasis… (more)

Subjects/Keywords: Multilevel iterative solvers; High frequency wave propagation; High order finite element methods; Domain decomposition preconditioners

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Petrides, S. (2019). Adaptive multilevel solvers for the discontinuous Petrov–Galerkin method with an emphasis on high-frequency wave propagation problems. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/2153

Chicago Manual of Style (16th Edition):

Petrides, Socratis. “Adaptive multilevel solvers for the discontinuous Petrov–Galerkin method with an emphasis on high-frequency wave propagation problems.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed April 23, 2021. http://dx.doi.org/10.26153/tsw/2153.

MLA Handbook (7th Edition):

Petrides, Socratis. “Adaptive multilevel solvers for the discontinuous Petrov–Galerkin method with an emphasis on high-frequency wave propagation problems.” 2019. Web. 23 Apr 2021.

Vancouver:

Petrides S. Adaptive multilevel solvers for the discontinuous Petrov–Galerkin method with an emphasis on high-frequency wave propagation problems. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2021 Apr 23]. Available from: http://dx.doi.org/10.26153/tsw/2153.

Council of Science Editors:

Petrides S. Adaptive multilevel solvers for the discontinuous Petrov–Galerkin method with an emphasis on high-frequency wave propagation problems. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/2153

7. Ding, Tian, 1986-. Numerical algorithms for inverse problems in acoustics and optics.

Degree: PhD, Mathematics, 2014, University of Texas – Austin

 The objective of this dissertation is to develop computational algorithms for solving inverse coefficient problems for partial differential equations that appear in two medical imaging… (more)

Subjects/Keywords: Inverse transport problems; Radiative transport equation; Subspace optimization method; Quantitative photoacoustic tomography (QPAT); Singular value decomposition; Optical imaging; Diffuse optical tomography; Fluorescence optical tomography; Inverse problems; Elastic wave equation; Convolutional perfectly matched layers (C-PML); Parallel computation; BFGS algorithm; Landweber iteration; Neumann series algorithm; Quantitative thermoacoustic tomography (QTAT)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ding, Tian, 1. (2014). Numerical algorithms for inverse problems in acoustics and optics. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/31504

Chicago Manual of Style (16th Edition):

Ding, Tian, 1986-. “Numerical algorithms for inverse problems in acoustics and optics.” 2014. Doctoral Dissertation, University of Texas – Austin. Accessed April 23, 2021. http://hdl.handle.net/2152/31504.

MLA Handbook (7th Edition):

Ding, Tian, 1986-. “Numerical algorithms for inverse problems in acoustics and optics.” 2014. Web. 23 Apr 2021.

Vancouver:

Ding, Tian 1. Numerical algorithms for inverse problems in acoustics and optics. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2014. [cited 2021 Apr 23]. Available from: http://hdl.handle.net/2152/31504.

Council of Science Editors:

Ding, Tian 1. Numerical algorithms for inverse problems in acoustics and optics. [Doctoral Dissertation]. University of Texas – Austin; 2014. Available from: http://hdl.handle.net/2152/31504

8. -9567-1322. Fast integral equation solver for variable coefficient elliptic PDEs in complex geometries.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2017, University of Texas – Austin

 This dissertation presents new numerical algorithms and related software for the numerical solution of elliptic boundary value problems with variable coefficients on certain classes of… (more)

Subjects/Keywords: Elliptic boundary value problems; Fast multipole method; Integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-9567-1322. (2017). Fast integral equation solver for variable coefficient elliptic PDEs in complex geometries. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/63349

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-9567-1322. “Fast integral equation solver for variable coefficient elliptic PDEs in complex geometries.” 2017. Doctoral Dissertation, University of Texas – Austin. Accessed April 23, 2021. http://hdl.handle.net/2152/63349.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-9567-1322. “Fast integral equation solver for variable coefficient elliptic PDEs in complex geometries.” 2017. Web. 23 Apr 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-9567-1322. Fast integral equation solver for variable coefficient elliptic PDEs in complex geometries. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2017. [cited 2021 Apr 23]. Available from: http://hdl.handle.net/2152/63349.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-9567-1322. Fast integral equation solver for variable coefficient elliptic PDEs in complex geometries. [Doctoral Dissertation]. University of Texas – Austin; 2017. Available from: http://hdl.handle.net/2152/63349

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

9. Nagaraj, Sriram. DPG methods for nonlinear fiber optics.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2018, University of Texas – Austin

 In recent years, the Discontinuous Petrov-Galerkin (DPG) method has been the subject of significant study. It comes with a collection of desirable properties, including uniform/mesh… (more)

Subjects/Keywords: Discontinuous Petrov-Galerkin method; Nonlinear fiber optics; Mathematical modeling; Finite element analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nagaraj, S. (2018). DPG methods for nonlinear fiber optics. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/67704

Chicago Manual of Style (16th Edition):

Nagaraj, Sriram. “DPG methods for nonlinear fiber optics.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed April 23, 2021. http://hdl.handle.net/2152/67704.

MLA Handbook (7th Edition):

Nagaraj, Sriram. “DPG methods for nonlinear fiber optics.” 2018. Web. 23 Apr 2021.

Vancouver:

Nagaraj S. DPG methods for nonlinear fiber optics. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Apr 23]. Available from: http://hdl.handle.net/2152/67704.

Council of Science Editors:

Nagaraj S. DPG methods for nonlinear fiber optics. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/67704

10. Worthen, Jennifer Anne. Inverse problems in mantle convection : models, algorithms, and applications.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2012, University of Texas – Austin

 Mantle convection is the principal control on the thermal and geological evolution of the earth, including the motion of the tectonic plates, which in turn… (more)

Subjects/Keywords: Inverse mantle convection

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Worthen, J. A. (2012). Inverse problems in mantle convection : models, algorithms, and applications. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/19458

Chicago Manual of Style (16th Edition):

Worthen, Jennifer Anne. “Inverse problems in mantle convection : models, algorithms, and applications.” 2012. Doctoral Dissertation, University of Texas – Austin. Accessed April 23, 2021. http://hdl.handle.net/2152/19458.

MLA Handbook (7th Edition):

Worthen, Jennifer Anne. “Inverse problems in mantle convection : models, algorithms, and applications.” 2012. Web. 23 Apr 2021.

Vancouver:

Worthen JA. Inverse problems in mantle convection : models, algorithms, and applications. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2012. [cited 2021 Apr 23]. Available from: http://hdl.handle.net/2152/19458.

Council of Science Editors:

Worthen JA. Inverse problems in mantle convection : models, algorithms, and applications. [Doctoral Dissertation]. University of Texas – Austin; 2012. Available from: http://hdl.handle.net/2152/19458

11. Tsuji, Paul Hikaru. Fast algorithms for frequency domain wave propagation.

Degree: PhD, Computational and Applied Mathematics, 2012, University of Texas – Austin

 High-frequency wave phenomena is observed in many physical settings, most notably in acoustics, electromagnetics, and elasticity. In all of these fields, numerical simulation and modeling… (more)

Subjects/Keywords: Fast algorithms; Boundary element methods; Boundary integral equations; Fast multipole methods; Nedelec elements; Spectral element methods; Finite element methods; Preconditioners; Perfectly matched layers; Radiation conditions; Time harmonic; Frequency domain; Wave propagation; Maxwell's equations; Helmholtz equation; Linear elasticity; Elastic wave equation; Computational electromagnetics; Computational acoustics; Electromagnetic cloaking; Seismic velocity models; Overthrust; Salt dome

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tsuji, P. H. (2012). Fast algorithms for frequency domain wave propagation. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/19533

Chicago Manual of Style (16th Edition):

Tsuji, Paul Hikaru. “Fast algorithms for frequency domain wave propagation.” 2012. Doctoral Dissertation, University of Texas – Austin. Accessed April 23, 2021. http://hdl.handle.net/2152/19533.

MLA Handbook (7th Edition):

Tsuji, Paul Hikaru. “Fast algorithms for frequency domain wave propagation.” 2012. Web. 23 Apr 2021.

Vancouver:

Tsuji PH. Fast algorithms for frequency domain wave propagation. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2012. [cited 2021 Apr 23]. Available from: http://hdl.handle.net/2152/19533.

Council of Science Editors:

Tsuji PH. Fast algorithms for frequency domain wave propagation. [Doctoral Dissertation]. University of Texas – Austin; 2012. Available from: http://hdl.handle.net/2152/19533

12. Xue, Zhiguang. Regularization strategies for increasing efficiency and robustness of least-squares RTM and FWI.

Degree: PhD, Geological Sciences, 2018, University of Texas – Austin

 Seismic imaging in geologically complicated areas is playing an extremely important role for hydrocarbon exploration. To improve the resolution and fidelity of subsurface image or… (more)

Subjects/Keywords: Least-squares reverse-time migration; Full waveform inversion; Efficiency; Robustness; Regularization strategy

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xue, Z. (2018). Regularization strategies for increasing efficiency and robustness of least-squares RTM and FWI. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/63845

Chicago Manual of Style (16th Edition):

Xue, Zhiguang. “Regularization strategies for increasing efficiency and robustness of least-squares RTM and FWI.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed April 23, 2021. http://hdl.handle.net/2152/63845.

MLA Handbook (7th Edition):

Xue, Zhiguang. “Regularization strategies for increasing efficiency and robustness of least-squares RTM and FWI.” 2018. Web. 23 Apr 2021.

Vancouver:

Xue Z. Regularization strategies for increasing efficiency and robustness of least-squares RTM and FWI. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Apr 23]. Available from: http://hdl.handle.net/2152/63845.

Council of Science Editors:

Xue Z. Regularization strategies for increasing efficiency and robustness of least-squares RTM and FWI. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/63845

13. Chang, Henry, 1976-. Modeling turbulence using optimal large eddy simulation.

Degree: PhD, Computational and Applied Mathematics, 2012, University of Texas – Austin

 Most flows in nature and engineering are turbulent, and many are wall-bounded. Further, in turbulent flows, the turbulence generally has a large impact on the… (more)

Subjects/Keywords: Turbulence simulation; Large eddy simulation; Optimal large eddy simulation; Turbulence modeling; Subgrid models; Wall-bounded turbulence; Channel flow; Three-point third-order velocity correlation; Triple velocity correlation

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chang, Henry, 1. (2012). Modeling turbulence using optimal large eddy simulation. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2012-05-4988

Chicago Manual of Style (16th Edition):

Chang, Henry, 1976-. “Modeling turbulence using optimal large eddy simulation.” 2012. Doctoral Dissertation, University of Texas – Austin. Accessed April 23, 2021. http://hdl.handle.net/2152/ETD-UT-2012-05-4988.

MLA Handbook (7th Edition):

Chang, Henry, 1976-. “Modeling turbulence using optimal large eddy simulation.” 2012. Web. 23 Apr 2021.

Vancouver:

Chang, Henry 1. Modeling turbulence using optimal large eddy simulation. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2012. [cited 2021 Apr 23]. Available from: http://hdl.handle.net/2152/ETD-UT-2012-05-4988.

Council of Science Editors:

Chang, Henry 1. Modeling turbulence using optimal large eddy simulation. [Doctoral Dissertation]. University of Texas – Austin; 2012. Available from: http://hdl.handle.net/2152/ETD-UT-2012-05-4988

14. Poulson, Jack Lesly. Fast parallel solution of heterogeneous 3D time-harmonic wave equations.

Degree: PhD, Computational and Applied Mathematics, 2012, University of Texas – Austin

 Several advancements related to the solution of 3D time-harmonic wave equations are presented, especially in the context of a parallel moving-PML sweeping preconditioner for problems… (more)

Subjects/Keywords: Time-harmonic; Sweeping; Preconditioner; Wave equation; Parallel; Multifrontal; Kronecker product; Translation invariance

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Poulson, J. L. (2012). Fast parallel solution of heterogeneous 3D time-harmonic wave equations. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2012-12-6622

Chicago Manual of Style (16th Edition):

Poulson, Jack Lesly. “Fast parallel solution of heterogeneous 3D time-harmonic wave equations.” 2012. Doctoral Dissertation, University of Texas – Austin. Accessed April 23, 2021. http://hdl.handle.net/2152/ETD-UT-2012-12-6622.

MLA Handbook (7th Edition):

Poulson, Jack Lesly. “Fast parallel solution of heterogeneous 3D time-harmonic wave equations.” 2012. Web. 23 Apr 2021.

Vancouver:

Poulson JL. Fast parallel solution of heterogeneous 3D time-harmonic wave equations. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2012. [cited 2021 Apr 23]. Available from: http://hdl.handle.net/2152/ETD-UT-2012-12-6622.

Council of Science Editors:

Poulson JL. Fast parallel solution of heterogeneous 3D time-harmonic wave equations. [Doctoral Dissertation]. University of Texas – Austin; 2012. Available from: http://hdl.handle.net/2152/ETD-UT-2012-12-6622


University of Texas – Austin

15. Guillen, Nestor Daniel. Regularization in phase transitions with Gibbs-Thomson law.

Degree: PhD, Mathematics, 2010, University of Texas – Austin

 We study the regularity of weak solutions for the Stefan and Hele- Shaw problems with Gibbs-Thomson law under special conditions. The main result says that… (more)

Subjects/Keywords: Nonlinear partial differential equations; Free boundary problems; Luckhaus theorem; Hele-shaw; Stefan problem; Lipschitz; Almost minimal surfaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Guillen, N. D. (2010). Regularization in phase transitions with Gibbs-Thomson law. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2010-12-2562

Chicago Manual of Style (16th Edition):

Guillen, Nestor Daniel. “Regularization in phase transitions with Gibbs-Thomson law.” 2010. Doctoral Dissertation, University of Texas – Austin. Accessed April 23, 2021. http://hdl.handle.net/2152/ETD-UT-2010-12-2562.

MLA Handbook (7th Edition):

Guillen, Nestor Daniel. “Regularization in phase transitions with Gibbs-Thomson law.” 2010. Web. 23 Apr 2021.

Vancouver:

Guillen ND. Regularization in phase transitions with Gibbs-Thomson law. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2010. [cited 2021 Apr 23]. Available from: http://hdl.handle.net/2152/ETD-UT-2010-12-2562.

Council of Science Editors:

Guillen ND. Regularization in phase transitions with Gibbs-Thomson law. [Doctoral Dissertation]. University of Texas – Austin; 2010. Available from: http://hdl.handle.net/2152/ETD-UT-2010-12-2562

.