Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"University of Texas – Austin" +contributor:("Demkowicz, Leszek"). Showing records 1 – 30 of 43 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

▼ Search Limiters

1. Chan, Jesse L. A DPG method for convection-diffusion problems.

Degree: PhD, Computational and Applied Mathematics, 2013, University of Texas – Austin

 Over the last three decades, CFD simulations have become commonplace as a tool in the engineering and design of high-speed aircraft. Experiments are often complemented… (more)

Subjects/Keywords: Finite element methods; Discontinuous Galerkin; Petrov-Galerkin; Optimal test functions; Minimum residual methods; Convection-diffusion; Compressible flow

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chan, J. L. (2013). A DPG method for convection-diffusion problems. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/21417

Chicago Manual of Style (16th Edition):

Chan, Jesse L. “A DPG method for convection-diffusion problems.” 2013. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/21417.

MLA Handbook (7th Edition):

Chan, Jesse L. “A DPG method for convection-diffusion problems.” 2013. Web. 18 Jan 2021.

Vancouver:

Chan JL. A DPG method for convection-diffusion problems. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2013. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/21417.

Council of Science Editors:

Chan JL. A DPG method for convection-diffusion problems. [Doctoral Dissertation]. University of Texas – Austin; 2013. Available from: http://hdl.handle.net/2152/21417

2. Pardo, David. Integration of hp-adaptivity with a two grid solver: applications to electromagnetics.

Degree: PhD, Computational and Applied Mathematics, 2004, University of Texas – Austin

 James Clerk Maxwell published in A Treatise on Electricity and Magnetism (1873) a set of partial differential equations governing the electromagnetic (EM) phenomena. Since then,… (more)

Subjects/Keywords: Finite element method; Electromagnetism

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pardo, D. (2004). Integration of hp-adaptivity with a two grid solver: applications to electromagnetics. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/2157

Chicago Manual of Style (16th Edition):

Pardo, David. “Integration of hp-adaptivity with a two grid solver: applications to electromagnetics.” 2004. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/2157.

MLA Handbook (7th Edition):

Pardo, David. “Integration of hp-adaptivity with a two grid solver: applications to electromagnetics.” 2004. Web. 18 Jan 2021.

Vancouver:

Pardo D. Integration of hp-adaptivity with a two grid solver: applications to electromagnetics. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2004. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/2157.

Council of Science Editors:

Pardo D. Integration of hp-adaptivity with a two grid solver: applications to electromagnetics. [Doctoral Dissertation]. University of Texas – Austin; 2004. Available from: http://hdl.handle.net/2152/2157

3. Ellis, Truman Everett. Space-time discontinuous Petrov-Galerkin finite elements for transient fluid mechanics.

Degree: PhD, Computational science, engineering, and mathematics, 2016, University of Texas – Austin

 Initial mesh design for computational fluid dynamics can be a time-consuming and expensive process. The stability properties and nonlinear convergence of most numerical methods rely… (more)

Subjects/Keywords: Space-time; Finite elements; Discontinuous Petrov-Galerkin; Navier-Stokes; Local conservation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ellis, T. E. (2016). Space-time discontinuous Petrov-Galerkin finite elements for transient fluid mechanics. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/43588

Chicago Manual of Style (16th Edition):

Ellis, Truman Everett. “Space-time discontinuous Petrov-Galerkin finite elements for transient fluid mechanics.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/43588.

MLA Handbook (7th Edition):

Ellis, Truman Everett. “Space-time discontinuous Petrov-Galerkin finite elements for transient fluid mechanics.” 2016. Web. 18 Jan 2021.

Vancouver:

Ellis TE. Space-time discontinuous Petrov-Galerkin finite elements for transient fluid mechanics. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/43588.

Council of Science Editors:

Ellis TE. Space-time discontinuous Petrov-Galerkin finite elements for transient fluid mechanics. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/43588


University of Texas – Austin

4. Arabshahi, Hamidreza. Space-time hybridized discontinuous Galerkin methods for shallow water equations.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2016, University of Texas – Austin

 The non-linear shallow water equations model the dynamics of a shallow layer of an incompressible fluid; they are obtained by asymptotic analysis and depth-averaging of… (more)

Subjects/Keywords: Shallow water equations; Space-time methods; Hybridized discontinuous Galerkin; Well-balanced formulation; A priori error estimate

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Arabshahi, H. (2016). Space-time hybridized discontinuous Galerkin methods for shallow water equations. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/47014

Chicago Manual of Style (16th Edition):

Arabshahi, Hamidreza. “Space-time hybridized discontinuous Galerkin methods for shallow water equations.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/47014.

MLA Handbook (7th Edition):

Arabshahi, Hamidreza. “Space-time hybridized discontinuous Galerkin methods for shallow water equations.” 2016. Web. 18 Jan 2021.

Vancouver:

Arabshahi H. Space-time hybridized discontinuous Galerkin methods for shallow water equations. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/47014.

Council of Science Editors:

Arabshahi H. Space-time hybridized discontinuous Galerkin methods for shallow water equations. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/47014


University of Texas – Austin

5. Du, Wei, Ph. D. Mathematical modeling of the interaction between two-phase environmental flow and protective hydraulic structures.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2016, University of Texas – Austin

 In August 2005, Hurricane Katrina struck the Gulf Coast of the United States. Over a thousand people lost their lives and the total damage was… (more)

Subjects/Keywords: Fluid structure interaction; Two-phase flow; Soil plasticity; Floodwall; Interaction models

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Du, Wei, P. D. (2016). Mathematical modeling of the interaction between two-phase environmental flow and protective hydraulic structures. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/47137

Chicago Manual of Style (16th Edition):

Du, Wei, Ph D. “Mathematical modeling of the interaction between two-phase environmental flow and protective hydraulic structures.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/47137.

MLA Handbook (7th Edition):

Du, Wei, Ph D. “Mathematical modeling of the interaction between two-phase environmental flow and protective hydraulic structures.” 2016. Web. 18 Jan 2021.

Vancouver:

Du, Wei PD. Mathematical modeling of the interaction between two-phase environmental flow and protective hydraulic structures. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/47137.

Council of Science Editors:

Du, Wei PD. Mathematical modeling of the interaction between two-phase environmental flow and protective hydraulic structures. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/47137


University of Texas – Austin

6. -6969-6857. New ideas in adjoint methods for PDEs : a saddle-point paradigm for finite element analysis and its role in the DPG methodology.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2018, University of Texas – Austin

 This dissertation presents a novel framework for the construction and analysis of finite element methods with trial and test spaces of unequal dimension. At the… (more)

Subjects/Keywords: DPG method; DPG* method; Mixed method; Adjoint method; Finite element method

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-6969-6857. (2018). New ideas in adjoint methods for PDEs : a saddle-point paradigm for finite element analysis and its role in the DPG methodology. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/68919

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-6969-6857. “New ideas in adjoint methods for PDEs : a saddle-point paradigm for finite element analysis and its role in the DPG methodology.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/68919.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-6969-6857. “New ideas in adjoint methods for PDEs : a saddle-point paradigm for finite element analysis and its role in the DPG methodology.” 2018. Web. 18 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-6969-6857. New ideas in adjoint methods for PDEs : a saddle-point paradigm for finite element analysis and its role in the DPG methodology. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/68919.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-6969-6857. New ideas in adjoint methods for PDEs : a saddle-point paradigm for finite element analysis and its role in the DPG methodology. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/68919

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Texas – Austin

7. Panneer Chelvam, Prem Kumar. Computational modeling of electromagnetic waves and their interactions with microplasmas.

Degree: PhD, Aerospace Engineering, 2017, University of Texas – Austin

 Development of a computational model to study the interaction of high frequency electromagnetic (EM) waves with plasmas is presented. The plasma is described using a… (more)

Subjects/Keywords: Electromagnetic waves; Plasmas; Computational modeling; Nédélec elements of first type; Nodal auxiliary space preconditioning; Preconditioning Helmholtz equation; Microdischarges; Dielectric resonators; Microplasmas

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Panneer Chelvam, P. K. (2017). Computational modeling of electromagnetic waves and their interactions with microplasmas. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/63458

Chicago Manual of Style (16th Edition):

Panneer Chelvam, Prem Kumar. “Computational modeling of electromagnetic waves and their interactions with microplasmas.” 2017. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/63458.

MLA Handbook (7th Edition):

Panneer Chelvam, Prem Kumar. “Computational modeling of electromagnetic waves and their interactions with microplasmas.” 2017. Web. 18 Jan 2021.

Vancouver:

Panneer Chelvam PK. Computational modeling of electromagnetic waves and their interactions with microplasmas. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2017. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/63458.

Council of Science Editors:

Panneer Chelvam PK. Computational modeling of electromagnetic waves and their interactions with microplasmas. [Doctoral Dissertation]. University of Texas – Austin; 2017. Available from: http://hdl.handle.net/2152/63458


University of Texas – Austin

8. Mood, Charles Gordon. Coupled SGBEM-FEM for efficient simulation of height-contained hydraulic fractures.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2019, University of Texas – Austin

 An efficient computational model is developed to simulate the growth of vertically oriented, height-contained hydraulic fractures. A symmetric Galerkin boundary element method, used to model… (more)

Subjects/Keywords: Hydraulic fracturing; SGBEM; Boundary elements

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mood, C. G. (2019). Coupled SGBEM-FEM for efficient simulation of height-contained hydraulic fractures. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/5858

Chicago Manual of Style (16th Edition):

Mood, Charles Gordon. “Coupled SGBEM-FEM for efficient simulation of height-contained hydraulic fractures.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://dx.doi.org/10.26153/tsw/5858.

MLA Handbook (7th Edition):

Mood, Charles Gordon. “Coupled SGBEM-FEM for efficient simulation of height-contained hydraulic fractures.” 2019. Web. 18 Jan 2021.

Vancouver:

Mood CG. Coupled SGBEM-FEM for efficient simulation of height-contained hydraulic fractures. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2021 Jan 18]. Available from: http://dx.doi.org/10.26153/tsw/5858.

Council of Science Editors:

Mood CG. Coupled SGBEM-FEM for efficient simulation of height-contained hydraulic fractures. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/5858


University of Texas – Austin

9. Toshniwal, Deepesh. Isogeometric Analysis : study of non-uniform degree and unstructured splines, and application to phase field modeling of corrosion.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2019, University of Texas – Austin

 Isogeometric Analysis or IGA was introduced by Hughes et al. (2005) to facilitate efficient design-through-analysis cycles for engineered objects. The goal of this technology is… (more)

Subjects/Keywords: Isogeometric Analysis; Finite elements; Smooth splines; Unstructured meshes; Non-uniform degree splines; Dimension formula; Corrosion modeling

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Toshniwal, D. (2019). Isogeometric Analysis : study of non-uniform degree and unstructured splines, and application to phase field modeling of corrosion. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/4799

Chicago Manual of Style (16th Edition):

Toshniwal, Deepesh. “Isogeometric Analysis : study of non-uniform degree and unstructured splines, and application to phase field modeling of corrosion.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://dx.doi.org/10.26153/tsw/4799.

MLA Handbook (7th Edition):

Toshniwal, Deepesh. “Isogeometric Analysis : study of non-uniform degree and unstructured splines, and application to phase field modeling of corrosion.” 2019. Web. 18 Jan 2021.

Vancouver:

Toshniwal D. Isogeometric Analysis : study of non-uniform degree and unstructured splines, and application to phase field modeling of corrosion. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2021 Jan 18]. Available from: http://dx.doi.org/10.26153/tsw/4799.

Council of Science Editors:

Toshniwal D. Isogeometric Analysis : study of non-uniform degree and unstructured splines, and application to phase field modeling of corrosion. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/4799


University of Texas – Austin

10. Kaur, Guneet. Envelope-tracking integral equation methods for band-pass transient scattering analysis.

Degree: PhD, Electrical and Computer Engineering, 2015, University of Texas – Austin

 This dissertation presents envelope-tracking (ET) integral equation methods to efficiently analyze band-pass scattering problems. Unlike the traditional time-domain marching-on-in-time (TD-MOT) schemes, ET-MOT schemes solve for… (more)

Subjects/Keywords: Envelope-tracking; Electromagnetics; Integral equations; Band-pass analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kaur, G. (2015). Envelope-tracking integral equation methods for band-pass transient scattering analysis. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/63180

Chicago Manual of Style (16th Edition):

Kaur, Guneet. “Envelope-tracking integral equation methods for band-pass transient scattering analysis.” 2015. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/63180.

MLA Handbook (7th Edition):

Kaur, Guneet. “Envelope-tracking integral equation methods for band-pass transient scattering analysis.” 2015. Web. 18 Jan 2021.

Vancouver:

Kaur G. Envelope-tracking integral equation methods for band-pass transient scattering analysis. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2015. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/63180.

Council of Science Editors:

Kaur G. Envelope-tracking integral equation methods for band-pass transient scattering analysis. [Doctoral Dissertation]. University of Texas – Austin; 2015. Available from: http://hdl.handle.net/2152/63180


University of Texas – Austin

11. -0826-8493. Coupled atmospheric, hydrodynamic, and hydrologic models for simulation of complex phenomena.

Degree: PhD, Engineering Mechanics, 2020, University of Texas – Austin

 Simulating the interplay between atmospheric, ocean, and overland physics is often too complicated for any single model to handle due to limitations on developmental and… (more)

Subjects/Keywords: 2D-3D coupling; Strong and weak coupling; Shallow water equations; Diffusive wave equations; Primitive equations; Wetting and drying; Baroclinic flow; Compound flooding

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-0826-8493. (2020). Coupled atmospheric, hydrodynamic, and hydrologic models for simulation of complex phenomena. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/7729

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-0826-8493. “Coupled atmospheric, hydrodynamic, and hydrologic models for simulation of complex phenomena.” 2020. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://dx.doi.org/10.26153/tsw/7729.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-0826-8493. “Coupled atmospheric, hydrodynamic, and hydrologic models for simulation of complex phenomena.” 2020. Web. 18 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-0826-8493. Coupled atmospheric, hydrodynamic, and hydrologic models for simulation of complex phenomena. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2020. [cited 2021 Jan 18]. Available from: http://dx.doi.org/10.26153/tsw/7729.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-0826-8493. Coupled atmospheric, hydrodynamic, and hydrologic models for simulation of complex phenomena. [Doctoral Dissertation]. University of Texas – Austin; 2020. Available from: http://dx.doi.org/10.26153/tsw/7729

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Texas – Austin

12. -5667-4520. Topographic amplification of seismic motion.

Degree: PhD, Civil Engineering, 2017, University of Texas – Austin

 Seismic hazard assessment relies increasingly on the numerical simulation of ground motion, since recent advances in numerical methods and computer architectures have made it ever… (more)

Subjects/Keywords: Topographic amplification; Seismic motion; Earthquake engineering; Wave propagation; Site effects; Absorbing boundary conditions; Seismic simulations; Seismic response; Site response; Seismic effects; Topographic effects

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-5667-4520. (2017). Topographic amplification of seismic motion. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/47170

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-5667-4520. “Topographic amplification of seismic motion.” 2017. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/47170.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-5667-4520. “Topographic amplification of seismic motion.” 2017. Web. 18 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-5667-4520. Topographic amplification of seismic motion. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2017. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/47170.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-5667-4520. Topographic amplification of seismic motion. [Doctoral Dissertation]. University of Texas – Austin; 2017. Available from: http://hdl.handle.net/2152/47170

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

13. Farrell, Kathryn Anne. Selection, calibration, and validation of coarse-grained models of atomistic systems.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2015, University of Texas – Austin

 This dissertation examines the development of coarse-grained models of atomistic systems for the purpose of predicting target quantities of interest in the presence of uncertainties.… (more)

Subjects/Keywords: Coarse graining; Bayesian inference; Sensitivity; Model plausibility; Model validation; Model selection

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Farrell, K. A. (2015). Selection, calibration, and validation of coarse-grained models of atomistic systems. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/30528

Chicago Manual of Style (16th Edition):

Farrell, Kathryn Anne. “Selection, calibration, and validation of coarse-grained models of atomistic systems.” 2015. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/30528.

MLA Handbook (7th Edition):

Farrell, Kathryn Anne. “Selection, calibration, and validation of coarse-grained models of atomistic systems.” 2015. Web. 18 Jan 2021.

Vancouver:

Farrell KA. Selection, calibration, and validation of coarse-grained models of atomistic systems. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2015. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/30528.

Council of Science Editors:

Farrell KA. Selection, calibration, and validation of coarse-grained models of atomistic systems. [Doctoral Dissertation]. University of Texas – Austin; 2015. Available from: http://hdl.handle.net/2152/30528


University of Texas – Austin

14. Evans, John Andrews. Divergence-free B-spline discretizations for viscous incompressible flows.

Degree: PhD, Computational and Applied Mathematics, 2011, University of Texas – Austin

 The incompressible Navier-Stokes equations are among the most important partial differential systems arising from classical physics. They are utilized to model a wide range of… (more)

Subjects/Keywords: Incompressible Navier-Stokes equations; B-splines; Mixed discretizations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Evans, J. A. (2011). Divergence-free B-spline discretizations for viscous incompressible flows. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2011-12-4506

Chicago Manual of Style (16th Edition):

Evans, John Andrews. “Divergence-free B-spline discretizations for viscous incompressible flows.” 2011. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/ETD-UT-2011-12-4506.

MLA Handbook (7th Edition):

Evans, John Andrews. “Divergence-free B-spline discretizations for viscous incompressible flows.” 2011. Web. 18 Jan 2021.

Vancouver:

Evans JA. Divergence-free B-spline discretizations for viscous incompressible flows. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2011. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/ETD-UT-2011-12-4506.

Council of Science Editors:

Evans JA. Divergence-free B-spline discretizations for viscous incompressible flows. [Doctoral Dissertation]. University of Texas – Austin; 2011. Available from: http://hdl.handle.net/2152/ETD-UT-2011-12-4506


University of Texas – Austin

15. -6327-2527. Hybridized discontinuous Galerkin methods for magnetohydrodynamics.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2018, University of Texas – Austin

 Discontinuous Galerkin (DG) methods combine the advantages of classical finite element and finite volume methods. Like finite volume methods, through the use of discontinuous spaces… (more)

Subjects/Keywords: Finite element methods; Discontinuous Galerkin methods; Hybridized discontinuous Galerkin methods; Stokes equations; Oseen equations; Magnetohydrodynamics; Resistive magnetohydrodynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-6327-2527. (2018). Hybridized discontinuous Galerkin methods for magnetohydrodynamics. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/2865

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-6327-2527. “Hybridized discontinuous Galerkin methods for magnetohydrodynamics.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://dx.doi.org/10.26153/tsw/2865.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-6327-2527. “Hybridized discontinuous Galerkin methods for magnetohydrodynamics.” 2018. Web. 18 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-6327-2527. Hybridized discontinuous Galerkin methods for magnetohydrodynamics. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Jan 18]. Available from: http://dx.doi.org/10.26153/tsw/2865.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-6327-2527. Hybridized discontinuous Galerkin methods for magnetohydrodynamics. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://dx.doi.org/10.26153/tsw/2865

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Texas – Austin

16. Fathi, Arash. Full-waveform inversion in three-dimensional PML-truncated elastic media : theory, computations, and field experiments.

Degree: PhD, Civil, Architectural, and Environmental Engineering, 2015, University of Texas – Austin

 We are concerned with the high-fidelity subsurface imaging of the soil, which commonly arises in geotechnical site characterization and geophysical explorations. Specifically, we attempt to… (more)

Subjects/Keywords: Full-waveform inversion; Seismic inversion; Inverse medium problem; PDE-constrained optimization; Elastic wave propagation; Perfectly-matched-layer (PML); Field data; Subsurface imaging

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fathi, A. (2015). Full-waveform inversion in three-dimensional PML-truncated elastic media : theory, computations, and field experiments. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/30515

Chicago Manual of Style (16th Edition):

Fathi, Arash. “Full-waveform inversion in three-dimensional PML-truncated elastic media : theory, computations, and field experiments.” 2015. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/30515.

MLA Handbook (7th Edition):

Fathi, Arash. “Full-waveform inversion in three-dimensional PML-truncated elastic media : theory, computations, and field experiments.” 2015. Web. 18 Jan 2021.

Vancouver:

Fathi A. Full-waveform inversion in three-dimensional PML-truncated elastic media : theory, computations, and field experiments. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2015. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/30515.

Council of Science Editors:

Fathi A. Full-waveform inversion in three-dimensional PML-truncated elastic media : theory, computations, and field experiments. [Doctoral Dissertation]. University of Texas – Austin; 2015. Available from: http://hdl.handle.net/2152/30515


University of Texas – Austin

17. -4039-082X. Various applications of discontinuous Petrov-Galerkin (DPG) finite element methods.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2018, University of Texas – Austin

 Discontinuous Petrov-Galerkin (DPG) finite element methods have garnered significant attention since they were originally introduced. They discretize variational formulations with broken (discontinuous) test spaces and… (more)

Subjects/Keywords: Finite element methods; Numerical analysis; Computational mathematics; PDEs; DPG methods; DLS methods; PolyDPG methods; Linear elasticity; Viscoelasticity; Thermoviscoelasticity; DMA experiments; Form-wound coils

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-4039-082X. (2018). Various applications of discontinuous Petrov-Galerkin (DPG) finite element methods. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/65710

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-4039-082X. “Various applications of discontinuous Petrov-Galerkin (DPG) finite element methods.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/65710.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-4039-082X. “Various applications of discontinuous Petrov-Galerkin (DPG) finite element methods.” 2018. Web. 18 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-4039-082X. Various applications of discontinuous Petrov-Galerkin (DPG) finite element methods. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/65710.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-4039-082X. Various applications of discontinuous Petrov-Galerkin (DPG) finite element methods. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/65710

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

18. -8221-3645. Subsurface elastic wave energy focusing based on a time reversal concept.

Degree: PhD, Civil Engineering, 2017, University of Texas – Austin

 In the context of wave propagation, time-reversal refers to the invariance of the wave equation when the direction of traversing the time line is reversed.… (more)

Subjects/Keywords: Wave focusing; Time-reversal; Wave propagation; PML; Absorbing boundary condition

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-8221-3645. (2017). Subsurface elastic wave energy focusing based on a time reversal concept. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/61529

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-8221-3645. “Subsurface elastic wave energy focusing based on a time reversal concept.” 2017. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/61529.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-8221-3645. “Subsurface elastic wave energy focusing based on a time reversal concept.” 2017. Web. 18 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-8221-3645. Subsurface elastic wave energy focusing based on a time reversal concept. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2017. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/61529.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-8221-3645. Subsurface elastic wave energy focusing based on a time reversal concept. [Doctoral Dissertation]. University of Texas – Austin; 2017. Available from: http://hdl.handle.net/2152/61529

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

19. -4649-9727. High-order (hybridized) discontinuous Galerkin method for geophysical flows.

Degree: PhD, Engineering Mechanics, 2019, University of Texas – Austin

 As computational research has grown, simulation has become a standard tool in many fields of academic and industrial areas. For example, computational fluid dynamics (CFD)… (more)

Subjects/Keywords: Discontinuous Galerkin; DG; HDG; Hybridized DG; IMEX; Implicit-explicit; Exponential time integrator; ALE; Arbitrary Lagrangian-Eulerian; Sliding mesh; Nonconforming mesh; Degenerate elliptic equation; Mortar; Scalability

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-4649-9727. (2019). High-order (hybridized) discontinuous Galerkin method for geophysical flows. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/5476

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-4649-9727. “High-order (hybridized) discontinuous Galerkin method for geophysical flows.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://dx.doi.org/10.26153/tsw/5476.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-4649-9727. “High-order (hybridized) discontinuous Galerkin method for geophysical flows.” 2019. Web. 18 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-4649-9727. High-order (hybridized) discontinuous Galerkin method for geophysical flows. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2021 Jan 18]. Available from: http://dx.doi.org/10.26153/tsw/5476.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-4649-9727. High-order (hybridized) discontinuous Galerkin method for geophysical flows. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/5476

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Texas – Austin

20. -6430-5266. A hybridized discontinuous Galerkin method for nonlinear dispersive water waves.

Degree: PhD, Engineering Mechanics, 2017, University of Texas – Austin

 Simulation of water waves near the coast is an important problem in different branches of engineering and mathematics. For mathematical models to be valid in… (more)

Subjects/Keywords: Discontinuous Galerkin; DG; Hybridized; HDG; Nonlinear shallow water; Green-Naghdi; NSWE; GN; Galerkin method; Water waves; Nonlinear water waves; Dispersive water waves; Water wave simulation; Coastal water waves modeling; Korteweg-de Vries equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-6430-5266. (2017). A hybridized discontinuous Galerkin method for nonlinear dispersive water waves. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/47354

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-6430-5266. “A hybridized discontinuous Galerkin method for nonlinear dispersive water waves.” 2017. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/47354.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-6430-5266. “A hybridized discontinuous Galerkin method for nonlinear dispersive water waves.” 2017. Web. 18 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-6430-5266. A hybridized discontinuous Galerkin method for nonlinear dispersive water waves. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2017. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/47354.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-6430-5266. A hybridized discontinuous Galerkin method for nonlinear dispersive water waves. [Doctoral Dissertation]. University of Texas – Austin; 2017. Available from: http://hdl.handle.net/2152/47354

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Texas – Austin

21. Petrides, Socratis. Adaptive multilevel solvers for the discontinuous Petrov–Galerkin method with an emphasis on high-frequency wave propagation problems.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2019, University of Texas – Austin

 This dissertation focuses on the development of fast and efficient solution schemes for the simulation of challenging problems in wave propagation phenomena. In particular, emphasis… (more)

Subjects/Keywords: Multilevel iterative solvers; High frequency wave propagation; High order finite element methods; Domain decomposition preconditioners

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Petrides, S. (2019). Adaptive multilevel solvers for the discontinuous Petrov–Galerkin method with an emphasis on high-frequency wave propagation problems. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/2153

Chicago Manual of Style (16th Edition):

Petrides, Socratis. “Adaptive multilevel solvers for the discontinuous Petrov–Galerkin method with an emphasis on high-frequency wave propagation problems.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://dx.doi.org/10.26153/tsw/2153.

MLA Handbook (7th Edition):

Petrides, Socratis. “Adaptive multilevel solvers for the discontinuous Petrov–Galerkin method with an emphasis on high-frequency wave propagation problems.” 2019. Web. 18 Jan 2021.

Vancouver:

Petrides S. Adaptive multilevel solvers for the discontinuous Petrov–Galerkin method with an emphasis on high-frequency wave propagation problems. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2021 Jan 18]. Available from: http://dx.doi.org/10.26153/tsw/2153.

Council of Science Editors:

Petrides S. Adaptive multilevel solvers for the discontinuous Petrov–Galerkin method with an emphasis on high-frequency wave propagation problems. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/2153

22. -5603-2533. Efficient algorithms for flow models coupled with geomechanics for porous media applications.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2016, University of Texas – Austin

 The coupling between subsurface flow and reservoir geomechanics plays a critical role in obtaining accurate results for models involving reservoir deformation, surface subsidence, well stability,… (more)

Subjects/Keywords: Poroelasticity; Biot system; Fixed-stress split iterative coupling; Undrained split iterative coupling; Explicit coupling; Single rate scheme; Multirate scheme; Banach fixed-point contraction; Fractured poroelastic media; A priori error estiamtes; Global inexact Newton methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-5603-2533. (2016). Efficient algorithms for flow models coupled with geomechanics for porous media applications. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/46503

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-5603-2533. “Efficient algorithms for flow models coupled with geomechanics for porous media applications.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/46503.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-5603-2533. “Efficient algorithms for flow models coupled with geomechanics for porous media applications.” 2016. Web. 18 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-5603-2533. Efficient algorithms for flow models coupled with geomechanics for porous media applications. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/46503.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-5603-2533. Efficient algorithms for flow models coupled with geomechanics for porous media applications. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/46503

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Texas – Austin

23. -0613-6243. A computational framework for the solution of infinite-dimensional Bayesian statistical inverse problems with application to global seismic inversion.

Degree: PhD, Computational science, engineering, and mathematics, 2015, University of Texas – Austin

 Quantifying uncertainties in large-scale forward and inverse PDE simulations has emerged as a central challenge facing the field of computational science and engineering. The promise… (more)

Subjects/Keywords: Bayesian inference; Infinite-dimensional inverse problems; Uncertainty quantification; Low-rank approximation; Optimality; Scalable algorithms; High performance computing; Markov chain Monte Carlo; Stochastic Newton; Seismic wave propagation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-0613-6243. (2015). A computational framework for the solution of infinite-dimensional Bayesian statistical inverse problems with application to global seismic inversion. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/31374

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-0613-6243. “A computational framework for the solution of infinite-dimensional Bayesian statistical inverse problems with application to global seismic inversion.” 2015. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/31374.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-0613-6243. “A computational framework for the solution of infinite-dimensional Bayesian statistical inverse problems with application to global seismic inversion.” 2015. Web. 18 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-0613-6243. A computational framework for the solution of infinite-dimensional Bayesian statistical inverse problems with application to global seismic inversion. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2015. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/31374.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-0613-6243. A computational framework for the solution of infinite-dimensional Bayesian statistical inverse problems with application to global seismic inversion. [Doctoral Dissertation]. University of Texas – Austin; 2015. Available from: http://hdl.handle.net/2152/31374

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

24. -0179-9606. Enabling higher order isogeometric analysis for applications in structural mechanics.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2019, University of Texas – Austin

 Efficient product development constitutes a workflow in which design, analysis, optimization, and manufacturing all work in unison to develop, test, measure, refine and validate a… (more)

Subjects/Keywords: Isogeometric analysis; Higher order finite elements; Computer aided design; Fast formation and assembly strategies

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-0179-9606. (2019). Enabling higher order isogeometric analysis for applications in structural mechanics. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/5857

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-0179-9606. “Enabling higher order isogeometric analysis for applications in structural mechanics.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://dx.doi.org/10.26153/tsw/5857.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-0179-9606. “Enabling higher order isogeometric analysis for applications in structural mechanics.” 2019. Web. 18 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-0179-9606. Enabling higher order isogeometric analysis for applications in structural mechanics. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2021 Jan 18]. Available from: http://dx.doi.org/10.26153/tsw/5857.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-0179-9606. Enabling higher order isogeometric analysis for applications in structural mechanics. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/5857

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Texas – Austin

25. -5494-1880. Fast and scalable solvers for high-order hybridized discontinuous Galerkin methods with applications to fluid dynamics and magnetohydrodynamics.

Degree: PhD, Aerospace Engineering, 2019, University of Texas – Austin

 The hybridized discontinuous Galerkin methods (HDG) introduced a decade ago is a promising candidate for high-order spatial discretization combined with implicit/implicit-explicit time stepping. Roughly speaking,… (more)

Subjects/Keywords: Hybridized discontinuous Galerkin; Fast solvers; Multigrid; Multilevel; MHD; Domain decomposition

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-5494-1880. (2019). Fast and scalable solvers for high-order hybridized discontinuous Galerkin methods with applications to fluid dynamics and magnetohydrodynamics. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/5474

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-5494-1880. “Fast and scalable solvers for high-order hybridized discontinuous Galerkin methods with applications to fluid dynamics and magnetohydrodynamics.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://dx.doi.org/10.26153/tsw/5474.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-5494-1880. “Fast and scalable solvers for high-order hybridized discontinuous Galerkin methods with applications to fluid dynamics and magnetohydrodynamics.” 2019. Web. 18 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-5494-1880. Fast and scalable solvers for high-order hybridized discontinuous Galerkin methods with applications to fluid dynamics and magnetohydrodynamics. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2021 Jan 18]. Available from: http://dx.doi.org/10.26153/tsw/5474.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-5494-1880. Fast and scalable solvers for high-order hybridized discontinuous Galerkin methods with applications to fluid dynamics and magnetohydrodynamics. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/5474

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

26. Nagaraj, Sriram. DPG methods for nonlinear fiber optics.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2018, University of Texas – Austin

 In recent years, the Discontinuous Petrov-Galerkin (DPG) method has been the subject of significant study. It comes with a collection of desirable properties, including uniform/mesh… (more)

Subjects/Keywords: Discontinuous Petrov-Galerkin method; Nonlinear fiber optics; Mathematical modeling; Finite element analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nagaraj, S. (2018). DPG methods for nonlinear fiber optics. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/67704

Chicago Manual of Style (16th Edition):

Nagaraj, Sriram. “DPG methods for nonlinear fiber optics.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/67704.

MLA Handbook (7th Edition):

Nagaraj, Sriram. “DPG methods for nonlinear fiber optics.” 2018. Web. 18 Jan 2021.

Vancouver:

Nagaraj S. DPG methods for nonlinear fiber optics. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/67704.

Council of Science Editors:

Nagaraj S. DPG methods for nonlinear fiber optics. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/67704


University of Texas – Austin

27. -6650-9510. Discontinuous Galerkin methods for Boltzmann - Poisson models of electron transport in semiconductors.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2016, University of Texas – Austin

 The work presented in this dissertation is related to several lines of research in the area of Discontinuous Galerkin (DG) Methods for computational electronic transport… (more)

Subjects/Keywords: DG; Boltzmann; Poisson; Boltzmann-Poisson models; BP; Semiconductors; Discontinuous Galerkin Methods; Electronic transport; Computational electronic transport

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-6650-9510. (2016). Discontinuous Galerkin methods for Boltzmann - Poisson models of electron transport in semiconductors. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/47093

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-6650-9510. “Discontinuous Galerkin methods for Boltzmann - Poisson models of electron transport in semiconductors.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/47093.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-6650-9510. “Discontinuous Galerkin methods for Boltzmann - Poisson models of electron transport in semiconductors.” 2016. Web. 18 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-6650-9510. Discontinuous Galerkin methods for Boltzmann - Poisson models of electron transport in semiconductors. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/47093.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-6650-9510. Discontinuous Galerkin methods for Boltzmann - Poisson models of electron transport in semiconductors. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/47093

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Texas – Austin

28. Taus, Matthias Franz. Isogeometric Analysis for boundary integral equations.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2015, University of Texas – Austin

 Since its emergence, Isogeometric Analysis (IgA) has initiated a revolution within the field of Finite Element Methods (FEMs) for two reasons: (i) geometry descriptions originating… (more)

Subjects/Keywords: Boundary integral equations; Isogeometric Analysis; Boundary element methods; Isogeometric boundary element methods; Collocation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Taus, M. F. (2015). Isogeometric Analysis for boundary integral equations. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/32824

Chicago Manual of Style (16th Edition):

Taus, Matthias Franz. “Isogeometric Analysis for boundary integral equations.” 2015. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/32824.

MLA Handbook (7th Edition):

Taus, Matthias Franz. “Isogeometric Analysis for boundary integral equations.” 2015. Web. 18 Jan 2021.

Vancouver:

Taus MF. Isogeometric Analysis for boundary integral equations. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2015. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/32824.

Council of Science Editors:

Taus MF. Isogeometric Analysis for boundary integral equations. [Doctoral Dissertation]. University of Texas – Austin; 2015. Available from: http://hdl.handle.net/2152/32824


University of Texas – Austin

29. -5063-5889. Numerical analysis of multiphase flows in porous media on non-rectangular geometry.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2017, University of Texas – Austin

 Fluid flow through porous media is a subject of common interest in many branches of engineering as well as applied natural science. In this work,… (more)

Subjects/Keywords: Multiphase flow; Porous media; Mixed finite element; H(div)-approximation; Arbogast-Tao element; Arbogast-Correa element; Direct serendipity element; Serendipity element; Enriched Galerkin method; Entropy viscosity stabilization; Capillary flux reconstruction; Heterogeneous capillary pressure; Two-phase flow

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-5063-5889. (2017). Numerical analysis of multiphase flows in porous media on non-rectangular geometry. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/68171

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-5063-5889. “Numerical analysis of multiphase flows in porous media on non-rectangular geometry.” 2017. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/68171.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-5063-5889. “Numerical analysis of multiphase flows in porous media on non-rectangular geometry.” 2017. Web. 18 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-5063-5889. Numerical analysis of multiphase flows in porous media on non-rectangular geometry. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2017. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/68171.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-5063-5889. Numerical analysis of multiphase flows in porous media on non-rectangular geometry. [Doctoral Dissertation]. University of Texas – Austin; 2017. Available from: http://hdl.handle.net/2152/68171

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

30. Roberts, Nathan Vanderkooy. A discontinuous Petrov-Galerkin methodology for incompressible flow problems.

Degree: PhD, Computational and Applied Mathematics, 2013, University of Texas – Austin

 Incompressible flows  – flows in which variations in the density of a fluid are negligible  – arise in a wide variety of applications, from hydraulics… (more)

Subjects/Keywords: Finite element methods; Discontinuous Galerkin methods; Petrov-Galerkin methods; Navier-Stokes equations; Fluid dynamics; Stokes equations; DPG

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Roberts, N. V. (2013). A discontinuous Petrov-Galerkin methodology for incompressible flow problems. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/21174

Chicago Manual of Style (16th Edition):

Roberts, Nathan Vanderkooy. “A discontinuous Petrov-Galerkin methodology for incompressible flow problems.” 2013. Doctoral Dissertation, University of Texas – Austin. Accessed January 18, 2021. http://hdl.handle.net/2152/21174.

MLA Handbook (7th Edition):

Roberts, Nathan Vanderkooy. “A discontinuous Petrov-Galerkin methodology for incompressible flow problems.” 2013. Web. 18 Jan 2021.

Vancouver:

Roberts NV. A discontinuous Petrov-Galerkin methodology for incompressible flow problems. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2013. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2152/21174.

Council of Science Editors:

Roberts NV. A discontinuous Petrov-Galerkin methodology for incompressible flow problems. [Doctoral Dissertation]. University of Texas – Austin; 2013. Available from: http://hdl.handle.net/2152/21174

[1] [2]

.