Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"University of Oklahoma" +contributor:("Walters, D. Keith"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Oklahoma

1. Wang, Huiyu. Analytical and computational modeling of multiphase flow in ferrofluid charged oscillating heat pipes.

Degree: PhD, 2020, University of Oklahoma

Electromagnetic-based energy harvesting materials and devices have emerged as a prominent research area in the last ten years, especially systems using ferrofluidic induction—a process that generates voltage via the pulsation of a ferrofluid (iron-based nanofluid) through a solenoid. This work includes the development of an analytical model and computational modeling methods to investigate ferrofluid pulsating flow within an energy harvesting device and the mass and heat transfer performance of a two-phase closed thermosyphon (TPCT) and oscillating heat pipe (OHP). First, an analytical model is proposed to predict the induced electromotive force (EMF) based on the flow behavior and magnetic properties of a pulsating ferrofluid energy harvesting device. The model identifies key parameters for describing and optimizing induction for ferrofluid pulsing through a solenoid. Data from a previously documented experimental study was used to validate the analytical model, and both the experimental data and analytical model show the same trends with the induced EMF increasing as a function of pulsating frequency and magnetic field strength as a higher percentage of the ferrofluid nanoparticle moments are aligned. Second, computational fluid dynamics (CFD) simulations were performed to predict the heat transfer performance of a TPCT. Simulations were performed using a three-dimensional finite-volume flow solver (ANSYS Fluent) with a pressure-based scheme for the solution of the continuity and momentum equations, volume-of-fluid method for resolution of the liquid-vapor phase interface, and a temperature-dependent model for interphase mass transfer by evaporation and condensation. Different model and numerical scheme combinations were investigated to identify an efficient and consistently accurate method using currently available software tools. To address issues with previously published simulation methods violating the conservation of mass, a new variable saturation temperature model was tested along with mass transfer coefficients based on the vapor-liquid density ratio and more physically realistic boundary conditions. The variable saturation temperature model significantly mitigated mass and energy imbalance in the simulations, for both constant heat flux and convection condenser boundary conditions. In addition, for the VOF discretization the Geo-Reconstruct scheme was found to be more accurate than the Compressive scheme available in Fluent without additional computational cost. Third, simulations of a vertical OHP were performed using the CFD methodology developed for the TPCT system. Results show simulations using appropriate values for the evaporation and condensation mass transfer time relaxation parameters and the new variable saturation temperature model are in good agreement with the available experimental data. For the OHP system, using the Compressive discretization scheme for the VOF model allowed for computationally efficient simulation. It is believed that the advances in analytical and computational modeling… Advisors/Committee Members: Walters, D. Keith (advisor), Walters, Keisha B. (advisor), Ruyle, Jessica E. (committee member), Shabgard, Hamidreza (committee member), Vedula, Prakash (committee member), Garg, Jivtesh (committee member).

Subjects/Keywords: Heat Transfer; Computational fluid dynamics (CFD); Electrodynamic energy harvesting

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, H. (2020). Analytical and computational modeling of multiphase flow in ferrofluid charged oscillating heat pipes. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/324967

Chicago Manual of Style (16th Edition):

Wang, Huiyu. “Analytical and computational modeling of multiphase flow in ferrofluid charged oscillating heat pipes.” 2020. Doctoral Dissertation, University of Oklahoma. Accessed February 27, 2021. http://hdl.handle.net/11244/324967.

MLA Handbook (7th Edition):

Wang, Huiyu. “Analytical and computational modeling of multiphase flow in ferrofluid charged oscillating heat pipes.” 2020. Web. 27 Feb 2021.

Vancouver:

Wang H. Analytical and computational modeling of multiphase flow in ferrofluid charged oscillating heat pipes. [Internet] [Doctoral dissertation]. University of Oklahoma; 2020. [cited 2021 Feb 27]. Available from: http://hdl.handle.net/11244/324967.

Council of Science Editors:

Wang H. Analytical and computational modeling of multiphase flow in ferrofluid charged oscillating heat pipes. [Doctoral Dissertation]. University of Oklahoma; 2020. Available from: http://hdl.handle.net/11244/324967

.