Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"University of Minnesota" +contributor:("Terrence Simon, Jane Davidson"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Minnesota

1. Hafvenstein, David James. Thermodynamic and heat transfer models of an open accumulator.

Degree: MS, Mechanical Engineering, 2009, University of Minnesota

University of Minnesota M.S. thesis. December 2009. Major: Mechanical Engineering. Advisors: Terrence Simon, Jane Davidson. 1 computer file (PDF); xvi, 244 pages, appendices A-Q. Ill. (some col.)

A conventional accumulator stores energy for hydraulic systems by compressing an enclosed mass of air, but this air takes up too much volume at low pressure to be practical in applications such as a hydraulic hybrid passenger vehicle. An open accumulator compresses air from the atmosphere to store energy, eliminating the need to store low-pressure air but creating large temperature swings if the heat transfer during compression and expansion is poor. This thesis investigates thermodynamic and heat transfer aspects of an open accumulator to assist in its design. A thermodynamic model was created to determine the efficiency and required heat transfer for open accumulator designs with a volume 1/5th that of a comparable conventional, or “closed,” accumulator. A heat transfer parameter, Z = hA/V, describes how easy it would be to implement the required heat transfer, with low required values of Z being desirable. A design with only one stage of compression and high wall temperature had a lower required value for Z than the high pressure stages in multi-stage designs. For an open accumulator that provides 20 kW of power in expansion and 840 kJ of energy storage at a pressure of 350 times atmospheric conditions, the volume target was 15.7 ℓ and the required Z values for compression and expansion were approximately 6.2×104 W/m3K. A computational fluid dynamics model using the program FLUENT was created to investigate whether the required Z could be achieved in a more practical, three-stage open accumulator design. The expansion case of the lowest-pressure stage was simulated, with a required Z value from the thermodynamic model of 3.83×104 W/m3K. The iv computational domain was a symmetrical, 3-D, diaphragm-bounded chamber of approximately 0.5 ℓ displaced volume, and a realizable k-ε model was used to model the effects of turbulence. The flow pattern generated during the air intake period dominated the flow during expansion, and peak local heat fluxes occurred where the intake flow patterns drew cold fluid next to the walls. The peak heat transfer for the simulation was 386 W. The mean Z value calculated was 9.79×103 W/m3K, around 1/4th of the required value.

Advisors/Committee Members: Terrence Simon, Jane Davidson.

Subjects/Keywords: Hydraulic; Thermodynamic model; 3-D; FLUENT; Mechanical Engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hafvenstein, D. J. (2009). Thermodynamic and heat transfer models of an open accumulator. (Masters Thesis). University of Minnesota. Retrieved from http://purl.umn.edu/59828

Chicago Manual of Style (16th Edition):

Hafvenstein, David James. “Thermodynamic and heat transfer models of an open accumulator.” 2009. Masters Thesis, University of Minnesota. Accessed December 13, 2019. http://purl.umn.edu/59828.

MLA Handbook (7th Edition):

Hafvenstein, David James. “Thermodynamic and heat transfer models of an open accumulator.” 2009. Web. 13 Dec 2019.

Vancouver:

Hafvenstein DJ. Thermodynamic and heat transfer models of an open accumulator. [Internet] [Masters thesis]. University of Minnesota; 2009. [cited 2019 Dec 13]. Available from: http://purl.umn.edu/59828.

Council of Science Editors:

Hafvenstein DJ. Thermodynamic and heat transfer models of an open accumulator. [Masters Thesis]. University of Minnesota; 2009. Available from: http://purl.umn.edu/59828

.