Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"University of Michigan" +contributor:("Skinner, Christopher M."). Showing records 1 – 8 of 8 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Michigan

1. Brown, Jim L. Saito-Kurokawa lifts, L-values for GL2, and congruences between Siegel modular forms.

Degree: PhD, Pure Sciences, 2005, University of Michigan

 Let f be a newform of weight 2k - 2 and level 1. There is a conjecture of Bloch and Kato that states that the… (more)

Subjects/Keywords: Congruences; Gl2; L-values; Saito-kurokawa Lifts; Siegel Modular Forms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brown, J. L. (2005). Saito-Kurokawa lifts, L-values for GL2, and congruences between Siegel modular forms. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/125307

Chicago Manual of Style (16th Edition):

Brown, Jim L. “Saito-Kurokawa lifts, L-values for GL2, and congruences between Siegel modular forms.” 2005. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/125307.

MLA Handbook (7th Edition):

Brown, Jim L. “Saito-Kurokawa lifts, L-values for GL2, and congruences between Siegel modular forms.” 2005. Web. 05 Mar 2021.

Vancouver:

Brown JL. Saito-Kurokawa lifts, L-values for GL2, and congruences between Siegel modular forms. [Internet] [Doctoral dissertation]. University of Michigan; 2005. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/125307.

Council of Science Editors:

Brown JL. Saito-Kurokawa lifts, L-values for GL2, and congruences between Siegel modular forms. [Doctoral Dissertation]. University of Michigan; 2005. Available from: http://hdl.handle.net/2027.42/125307


University of Michigan

2. Arnold, Trevor S. Anticyclotomic Iwasawa theory for modular forms.

Degree: PhD, Pure Sciences, 2006, University of Michigan

 Let f be a cuspidal newform and let rho f : GQ → GL 2( O ) be its associated p-adic Galois representation. Assume there… (more)

Subjects/Keywords: Anticyclotomic; Iwasawa Theory; Modular Forms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Arnold, T. S. (2006). Anticyclotomic Iwasawa theory for modular forms. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/125951

Chicago Manual of Style (16th Edition):

Arnold, Trevor S. “Anticyclotomic Iwasawa theory for modular forms.” 2006. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/125951.

MLA Handbook (7th Edition):

Arnold, Trevor S. “Anticyclotomic Iwasawa theory for modular forms.” 2006. Web. 05 Mar 2021.

Vancouver:

Arnold TS. Anticyclotomic Iwasawa theory for modular forms. [Internet] [Doctoral dissertation]. University of Michigan; 2006. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/125951.

Council of Science Editors:

Arnold TS. Anticyclotomic Iwasawa theory for modular forms. [Doctoral Dissertation]. University of Michigan; 2006. Available from: http://hdl.handle.net/2027.42/125951


University of Michigan

3. Berger, Tobias Theodor. An Eisenstein ideal for imaginary quadratic fields.

Degree: PhD, Pure Sciences, 2005, University of Michigan

 For certain algebraic Hecke characters chi of an imaginary quadratic field F we define an Eisenstein ideal in a Hecke algebra acting on cuspidal automorphic… (more)

Subjects/Keywords: Arithmetic Group Cohomology; Automorphic Forms; Eisenstein Ideal; Imaginary Quadratic Fields; Selmer Groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Berger, T. T. (2005). An Eisenstein ideal for imaginary quadratic fields. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/125022

Chicago Manual of Style (16th Edition):

Berger, Tobias Theodor. “An Eisenstein ideal for imaginary quadratic fields.” 2005. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/125022.

MLA Handbook (7th Edition):

Berger, Tobias Theodor. “An Eisenstein ideal for imaginary quadratic fields.” 2005. Web. 05 Mar 2021.

Vancouver:

Berger TT. An Eisenstein ideal for imaginary quadratic fields. [Internet] [Doctoral dissertation]. University of Michigan; 2005. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/125022.

Council of Science Editors:

Berger TT. An Eisenstein ideal for imaginary quadratic fields. [Doctoral Dissertation]. University of Michigan; 2005. Available from: http://hdl.handle.net/2027.42/125022


University of Michigan

4. Klosin, Krzysztof. Congruences among automorphic forms on the unitary group U(2,2).

Degree: PhD, Pure Sciences, 2006, University of Michigan

 Let k be a positive integer divisible by 4, ℓ > k an odd prime, and f a normalized elliptic cuspidal eigenform of weight k… (more)

Subjects/Keywords: Automorphic Forms; Bloch-kato Conjecture; Congruences; Galois Representation; Galois Representations; L-functions; Selmer Group; Unitary Group U(2,2)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Klosin, K. (2006). Congruences among automorphic forms on the unitary group U(2,2). (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/126079

Chicago Manual of Style (16th Edition):

Klosin, Krzysztof. “Congruences among automorphic forms on the unitary group U(2,2).” 2006. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/126079.

MLA Handbook (7th Edition):

Klosin, Krzysztof. “Congruences among automorphic forms on the unitary group U(2,2).” 2006. Web. 05 Mar 2021.

Vancouver:

Klosin K. Congruences among automorphic forms on the unitary group U(2,2). [Internet] [Doctoral dissertation]. University of Michigan; 2006. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/126079.

Council of Science Editors:

Klosin K. Congruences among automorphic forms on the unitary group U(2,2). [Doctoral Dissertation]. University of Michigan; 2006. Available from: http://hdl.handle.net/2027.42/126079

5. Eischen, Ellen E. p-adic Differential Operators on Automorphic Forms and Applications.

Degree: PhD, Mathematics, 2009, University of Michigan

 We construct certain C ∞-differential operators and their p-adic analogues, which act on (vector- or scalar-valued) automorphic forms on the unitary groups U (n, n).… (more)

Subjects/Keywords: Differential Operators; Automorphic Forms; P-adic Automorphic Forms; P-adic Differential Operators; Gauss-Manin Connection; Arithmeticity; Mathematics; Science

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Eischen, E. E. (2009). p-adic Differential Operators on Automorphic Forms and Applications. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/63860

Chicago Manual of Style (16th Edition):

Eischen, Ellen E. “p-adic Differential Operators on Automorphic Forms and Applications.” 2009. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/63860.

MLA Handbook (7th Edition):

Eischen, Ellen E. “p-adic Differential Operators on Automorphic Forms and Applications.” 2009. Web. 05 Mar 2021.

Vancouver:

Eischen EE. p-adic Differential Operators on Automorphic Forms and Applications. [Internet] [Doctoral dissertation]. University of Michigan; 2009. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/63860.

Council of Science Editors:

Eischen EE. p-adic Differential Operators on Automorphic Forms and Applications. [Doctoral Dissertation]. University of Michigan; 2009. Available from: http://hdl.handle.net/2027.42/63860

6. Jia, Johnson X. Arithmetic of the Yoshida Lift.

Degree: PhD, Mathematics, 2010, University of Michigan

 Co-Chairs: Stephen M. DeBacker and Christopher M. Skinner This thesis concerns the arithmetic properties of the Yoshida lift, Y, which is a scalar- valued holomorphic… (more)

Subjects/Keywords: Yoshida Lift; Theta Lifts; Automorphic Forms; Non-vanishing; GSp_4; Integrality; Mathematics; Science

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jia, J. X. (2010). Arithmetic of the Yoshida Lift. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/77876

Chicago Manual of Style (16th Edition):

Jia, Johnson X. “Arithmetic of the Yoshida Lift.” 2010. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/77876.

MLA Handbook (7th Edition):

Jia, Johnson X. “Arithmetic of the Yoshida Lift.” 2010. Web. 05 Mar 2021.

Vancouver:

Jia JX. Arithmetic of the Yoshida Lift. [Internet] [Doctoral dissertation]. University of Michigan; 2010. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/77876.

Council of Science Editors:

Jia JX. Arithmetic of the Yoshida Lift. [Doctoral Dissertation]. University of Michigan; 2010. Available from: http://hdl.handle.net/2027.42/77876

7. Graves, Hester K. On Euclidean Ideal Classes.

Degree: PhD, Mathematics, 2009, University of Michigan

 In 1979, H.K.Lenstra generalized the idea of Euclidean algorithms to Euclidean ideal classes. If a domain has a Euclidean algorithm, then it is a principal… (more)

Subjects/Keywords: Euclidean Ideal Class; Large Sieve; Gupta-Murty Bound; Euclidean; Class Group; Cyclic; Mathematics; Science

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Graves, H. K. (2009). On Euclidean Ideal Classes. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/63828

Chicago Manual of Style (16th Edition):

Graves, Hester K. “On Euclidean Ideal Classes.” 2009. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/63828.

MLA Handbook (7th Edition):

Graves, Hester K. “On Euclidean Ideal Classes.” 2009. Web. 05 Mar 2021.

Vancouver:

Graves HK. On Euclidean Ideal Classes. [Internet] [Doctoral dissertation]. University of Michigan; 2009. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/63828.

Council of Science Editors:

Graves HK. On Euclidean Ideal Classes. [Doctoral Dissertation]. University of Michigan; 2009. Available from: http://hdl.handle.net/2027.42/63828


University of Michigan

8. Agarwal, Mahesh K. p-adic L-functions for GSp(4) x GL (2).

Degree: PhD, Mathematics, 2007, University of Michigan

 Let p be an odd prime. In this thesis we construct a p-adic analog of a degree eight L-function L(s,Fxf) where F is an ordinary… (more)

Subjects/Keywords: P-adic L-function; Siegel Modular Forms; Pullback; Interpolate; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Agarwal, M. K. (2007). p-adic L-functions for GSp(4) x GL (2). (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/57644

Chicago Manual of Style (16th Edition):

Agarwal, Mahesh K. “p-adic L-functions for GSp(4) x GL (2).” 2007. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/57644.

MLA Handbook (7th Edition):

Agarwal, Mahesh K. “p-adic L-functions for GSp(4) x GL (2).” 2007. Web. 05 Mar 2021.

Vancouver:

Agarwal MK. p-adic L-functions for GSp(4) x GL (2). [Internet] [Doctoral dissertation]. University of Michigan; 2007. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/57644.

Council of Science Editors:

Agarwal MK. p-adic L-functions for GSp(4) x GL (2). [Doctoral Dissertation]. University of Michigan; 2007. Available from: http://hdl.handle.net/2027.42/57644

.