Advanced search options
You searched for +publisher:"University of Michigan" +contributor:("Skinner, Christopher M.")
.
Showing records 1 – 8 of
8 total matches.
▼ Search Limiters
University of Michigan
1. Brown, Jim L. Saito-Kurokawa lifts, L-values for GL2, and congruences between Siegel modular forms.
Degree: PhD, Pure Sciences, 2005, University of Michigan
URL: http://hdl.handle.net/2027.42/125307
Subjects/Keywords: Congruences; Gl2; L-values; Saito-kurokawa Lifts; Siegel Modular Forms
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Brown, J. L. (2005). Saito-Kurokawa lifts, L-values for GL2, and congruences between Siegel modular forms. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/125307
Chicago Manual of Style (16th Edition):
Brown, Jim L. “Saito-Kurokawa lifts, L-values for GL2, and congruences between Siegel modular forms.” 2005. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/125307.
MLA Handbook (7th Edition):
Brown, Jim L. “Saito-Kurokawa lifts, L-values for GL2, and congruences between Siegel modular forms.” 2005. Web. 05 Mar 2021.
Vancouver:
Brown JL. Saito-Kurokawa lifts, L-values for GL2, and congruences between Siegel modular forms. [Internet] [Doctoral dissertation]. University of Michigan; 2005. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/125307.
Council of Science Editors:
Brown JL. Saito-Kurokawa lifts, L-values for GL2, and congruences between Siegel modular forms. [Doctoral Dissertation]. University of Michigan; 2005. Available from: http://hdl.handle.net/2027.42/125307
University of Michigan
2. Arnold, Trevor S. Anticyclotomic Iwasawa theory for modular forms.
Degree: PhD, Pure Sciences, 2006, University of Michigan
URL: http://hdl.handle.net/2027.42/125951
Subjects/Keywords: Anticyclotomic; Iwasawa Theory; Modular Forms
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Arnold, T. S. (2006). Anticyclotomic Iwasawa theory for modular forms. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/125951
Chicago Manual of Style (16th Edition):
Arnold, Trevor S. “Anticyclotomic Iwasawa theory for modular forms.” 2006. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/125951.
MLA Handbook (7th Edition):
Arnold, Trevor S. “Anticyclotomic Iwasawa theory for modular forms.” 2006. Web. 05 Mar 2021.
Vancouver:
Arnold TS. Anticyclotomic Iwasawa theory for modular forms. [Internet] [Doctoral dissertation]. University of Michigan; 2006. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/125951.
Council of Science Editors:
Arnold TS. Anticyclotomic Iwasawa theory for modular forms. [Doctoral Dissertation]. University of Michigan; 2006. Available from: http://hdl.handle.net/2027.42/125951
University of Michigan
3. Berger, Tobias Theodor. An Eisenstein ideal for imaginary quadratic fields.
Degree: PhD, Pure Sciences, 2005, University of Michigan
URL: http://hdl.handle.net/2027.42/125022
Subjects/Keywords: Arithmetic Group Cohomology; Automorphic Forms; Eisenstein Ideal; Imaginary Quadratic Fields; Selmer Groups
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Berger, T. T. (2005). An Eisenstein ideal for imaginary quadratic fields. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/125022
Chicago Manual of Style (16th Edition):
Berger, Tobias Theodor. “An Eisenstein ideal for imaginary quadratic fields.” 2005. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/125022.
MLA Handbook (7th Edition):
Berger, Tobias Theodor. “An Eisenstein ideal for imaginary quadratic fields.” 2005. Web. 05 Mar 2021.
Vancouver:
Berger TT. An Eisenstein ideal for imaginary quadratic fields. [Internet] [Doctoral dissertation]. University of Michigan; 2005. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/125022.
Council of Science Editors:
Berger TT. An Eisenstein ideal for imaginary quadratic fields. [Doctoral Dissertation]. University of Michigan; 2005. Available from: http://hdl.handle.net/2027.42/125022
University of Michigan
4. Klosin, Krzysztof. Congruences among automorphic forms on the unitary group U(2,2).
Degree: PhD, Pure Sciences, 2006, University of Michigan
URL: http://hdl.handle.net/2027.42/126079
Subjects/Keywords: Automorphic Forms; Bloch-kato Conjecture; Congruences; Galois Representation; Galois Representations; L-functions; Selmer Group; Unitary Group U(2,2)
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Klosin, K. (2006). Congruences among automorphic forms on the unitary group U(2,2). (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/126079
Chicago Manual of Style (16th Edition):
Klosin, Krzysztof. “Congruences among automorphic forms on the unitary group U(2,2).” 2006. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/126079.
MLA Handbook (7th Edition):
Klosin, Krzysztof. “Congruences among automorphic forms on the unitary group U(2,2).” 2006. Web. 05 Mar 2021.
Vancouver:
Klosin K. Congruences among automorphic forms on the unitary group U(2,2). [Internet] [Doctoral dissertation]. University of Michigan; 2006. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/126079.
Council of Science Editors:
Klosin K. Congruences among automorphic forms on the unitary group U(2,2). [Doctoral Dissertation]. University of Michigan; 2006. Available from: http://hdl.handle.net/2027.42/126079
5. Eischen, Ellen E. p-adic Differential Operators on Automorphic Forms and Applications.
Degree: PhD, Mathematics, 2009, University of Michigan
URL: http://hdl.handle.net/2027.42/63860
Subjects/Keywords: Differential Operators; Automorphic Forms; P-adic Automorphic Forms; P-adic Differential Operators; Gauss-Manin Connection; Arithmeticity; Mathematics; Science
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Eischen, E. E. (2009). p-adic Differential Operators on Automorphic Forms and Applications. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/63860
Chicago Manual of Style (16th Edition):
Eischen, Ellen E. “p-adic Differential Operators on Automorphic Forms and Applications.” 2009. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/63860.
MLA Handbook (7th Edition):
Eischen, Ellen E. “p-adic Differential Operators on Automorphic Forms and Applications.” 2009. Web. 05 Mar 2021.
Vancouver:
Eischen EE. p-adic Differential Operators on Automorphic Forms and Applications. [Internet] [Doctoral dissertation]. University of Michigan; 2009. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/63860.
Council of Science Editors:
Eischen EE. p-adic Differential Operators on Automorphic Forms and Applications. [Doctoral Dissertation]. University of Michigan; 2009. Available from: http://hdl.handle.net/2027.42/63860
6. Jia, Johnson X. Arithmetic of the Yoshida Lift.
Degree: PhD, Mathematics, 2010, University of Michigan
URL: http://hdl.handle.net/2027.42/77876
Subjects/Keywords: Yoshida Lift; Theta Lifts; Automorphic Forms; Non-vanishing; GSp_4; Integrality; Mathematics; Science
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Jia, J. X. (2010). Arithmetic of the Yoshida Lift. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/77876
Chicago Manual of Style (16th Edition):
Jia, Johnson X. “Arithmetic of the Yoshida Lift.” 2010. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/77876.
MLA Handbook (7th Edition):
Jia, Johnson X. “Arithmetic of the Yoshida Lift.” 2010. Web. 05 Mar 2021.
Vancouver:
Jia JX. Arithmetic of the Yoshida Lift. [Internet] [Doctoral dissertation]. University of Michigan; 2010. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/77876.
Council of Science Editors:
Jia JX. Arithmetic of the Yoshida Lift. [Doctoral Dissertation]. University of Michigan; 2010. Available from: http://hdl.handle.net/2027.42/77876
7. Graves, Hester K. On Euclidean Ideal Classes.
Degree: PhD, Mathematics, 2009, University of Michigan
URL: http://hdl.handle.net/2027.42/63828
Subjects/Keywords: Euclidean Ideal Class; Large Sieve; Gupta-Murty Bound; Euclidean; Class Group; Cyclic; Mathematics; Science
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Graves, H. K. (2009). On Euclidean Ideal Classes. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/63828
Chicago Manual of Style (16th Edition):
Graves, Hester K. “On Euclidean Ideal Classes.” 2009. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/63828.
MLA Handbook (7th Edition):
Graves, Hester K. “On Euclidean Ideal Classes.” 2009. Web. 05 Mar 2021.
Vancouver:
Graves HK. On Euclidean Ideal Classes. [Internet] [Doctoral dissertation]. University of Michigan; 2009. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/63828.
Council of Science Editors:
Graves HK. On Euclidean Ideal Classes. [Doctoral Dissertation]. University of Michigan; 2009. Available from: http://hdl.handle.net/2027.42/63828
University of Michigan
8. Agarwal, Mahesh K. p-adic L-functions for GSp(4) x GL (2).
Degree: PhD, Mathematics, 2007, University of Michigan
URL: http://hdl.handle.net/2027.42/57644
Subjects/Keywords: P-adic L-function; Siegel Modular Forms; Pullback; Interpolate; Mathematics; Science
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Agarwal, M. K. (2007). p-adic L-functions for GSp(4) x GL (2). (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/57644
Chicago Manual of Style (16th Edition):
Agarwal, Mahesh K. “p-adic L-functions for GSp(4) x GL (2).” 2007. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/57644.
MLA Handbook (7th Edition):
Agarwal, Mahesh K. “p-adic L-functions for GSp(4) x GL (2).” 2007. Web. 05 Mar 2021.
Vancouver:
Agarwal MK. p-adic L-functions for GSp(4) x GL (2). [Internet] [Doctoral dissertation]. University of Michigan; 2007. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/57644.
Council of Science Editors:
Agarwal MK. p-adic L-functions for GSp(4) x GL (2). [Doctoral Dissertation]. University of Michigan; 2007. Available from: http://hdl.handle.net/2027.42/57644