Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"University of Michigan" +contributor:("Jeffries, Jack"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Walker, Robert. Uniform Symbolic Topologies in Non-Regular Rings.

Degree: PhD, Mathematics, 2019, University of Michigan

When does a Noetherian commutative ring R have uniform symbolic topologies (USTP) on primes  – read, when does there exist an integer D>0 such that the symbolic power P(Dr) lies in Pr for all prime ideals P in R and all r >0? Groundbreaking work of Ein  – Lazarsfeld  – Smith, as extended by Hochster and Huneke, and by Ma and Schwede in turn, provides a beautiful answer in the setting of finite-dimensional excellent regular rings. Their work shows that there exists a D depending only on the Krull dimension: in other words, the exact same D works for all regular rings as stated of a fixed dimension. Referring to this last observation, we say in the thesis that the class of excellent regular rings enjoys class solidarity relative to the uniform symbolic topology property (USTP class solidarity), a strong form of uniformity. In contrast, this thesis shows that for certain classes of non-regular rings including rational surface singularities and select normal toric rings, a uniform bound D does exist but depends on the ring, not just its dimension. In particular, for rational double point surface singularities over the field C of complex numbers, we show that USTP solidarity is plainly impossible. It is natural to sleuth for analogues of the Improved Ein  – Lazarsfeld  – Smith Theorem where the ring R is non-regular, or where the above ideal containments can be improved using a linear function whose growth rate is slower. This thesis lies in the overlap of these research directions, working with Noetherian domains. Advisors/Committee Members: Smith, Karen E (committee member), Jacobson, Daniel (committee member), Hochster, Mel (committee member), Jeffries, Jack (committee member), Koch, Sarah Colleen (committee member), Speyer, David E (committee member).

Subjects/Keywords: Symbolic Powers of Ideals in Noetherian Integral Domains; Rationally Singular Combinatorially Defined Algebras; Weil divisor class groups of Noetherian normal integral domains; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Walker, R. (2019). Uniform Symbolic Topologies in Non-Regular Rings. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/149907

Chicago Manual of Style (16th Edition):

Walker, Robert. “Uniform Symbolic Topologies in Non-Regular Rings.” 2019. Doctoral Dissertation, University of Michigan. Accessed August 06, 2020. http://hdl.handle.net/2027.42/149907.

MLA Handbook (7th Edition):

Walker, Robert. “Uniform Symbolic Topologies in Non-Regular Rings.” 2019. Web. 06 Aug 2020.

Vancouver:

Walker R. Uniform Symbolic Topologies in Non-Regular Rings. [Internet] [Doctoral dissertation]. University of Michigan; 2019. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/2027.42/149907.

Council of Science Editors:

Walker R. Uniform Symbolic Topologies in Non-Regular Rings. [Doctoral Dissertation]. University of Michigan; 2019. Available from: http://hdl.handle.net/2027.42/149907

.