Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"University of Michigan" +contributor:("Bonk, Mario"). Showing records 1 – 13 of 13 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Michigan

1. Yin, Qian. Lattes Maps and Combinatorial Expansion.

Degree: PhD, Mathematics, 2011, University of Michigan

 A Lattes map f : C → C is a rational map that is obtained from a finite quotient of a conformal torus endomorphism. In… (more)

Subjects/Keywords: Lattes Maps; Thurston Maps; Sphere; Postcritically Finite; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yin, Q. (2011). Lattes Maps and Combinatorial Expansion. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/86524

Chicago Manual of Style (16th Edition):

Yin, Qian. “Lattes Maps and Combinatorial Expansion.” 2011. Doctoral Dissertation, University of Michigan. Accessed December 04, 2020. http://hdl.handle.net/2027.42/86524.

MLA Handbook (7th Edition):

Yin, Qian. “Lattes Maps and Combinatorial Expansion.” 2011. Web. 04 Dec 2020.

Vancouver:

Yin Q. Lattes Maps and Combinatorial Expansion. [Internet] [Doctoral dissertation]. University of Michigan; 2011. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2027.42/86524.

Council of Science Editors:

Yin Q. Lattes Maps and Combinatorial Expansion. [Doctoral Dissertation]. University of Michigan; 2011. Available from: http://hdl.handle.net/2027.42/86524


University of Michigan

2. Wildrick, Kevin Michael. Quasisymmetric parameterizations of two -dimensional metric spaces.

Degree: PhD, Pure Sciences, 2007, University of Michigan

 The classical Uniformization Theorem states that every simply connected Riemann surface is conformally equivalent to one of the disk, the plane, and the sphere, each… (more)

Subjects/Keywords: Quasiconformal Mappings; Quasisymmetric Parameterizations; Two-dimensional Metric Spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wildrick, K. M. (2007). Quasisymmetric parameterizations of two -dimensional metric spaces. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/126854

Chicago Manual of Style (16th Edition):

Wildrick, Kevin Michael. “Quasisymmetric parameterizations of two -dimensional metric spaces.” 2007. Doctoral Dissertation, University of Michigan. Accessed December 04, 2020. http://hdl.handle.net/2027.42/126854.

MLA Handbook (7th Edition):

Wildrick, Kevin Michael. “Quasisymmetric parameterizations of two -dimensional metric spaces.” 2007. Web. 04 Dec 2020.

Vancouver:

Wildrick KM. Quasisymmetric parameterizations of two -dimensional metric spaces. [Internet] [Doctoral dissertation]. University of Michigan; 2007. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2027.42/126854.

Council of Science Editors:

Wildrick KM. Quasisymmetric parameterizations of two -dimensional metric spaces. [Doctoral Dissertation]. University of Michigan; 2007. Available from: http://hdl.handle.net/2027.42/126854

3. Snipes, Marie Ann. Flat Forms in Banach Spaces.

Degree: PhD, Mathematics, 2009, University of Michigan

 We define a flat partial differential form in a Banach space and show that the space of these forms is isometrically the dual space of… (more)

Subjects/Keywords: Flat Differential Form; Analysis in Banach Spaces; Geometric Measure Theory; Mathematics; Science

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Snipes, M. A. (2009). Flat Forms in Banach Spaces. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/63769

Chicago Manual of Style (16th Edition):

Snipes, Marie Ann. “Flat Forms in Banach Spaces.” 2009. Doctoral Dissertation, University of Michigan. Accessed December 04, 2020. http://hdl.handle.net/2027.42/63769.

MLA Handbook (7th Edition):

Snipes, Marie Ann. “Flat Forms in Banach Spaces.” 2009. Web. 04 Dec 2020.

Vancouver:

Snipes MA. Flat Forms in Banach Spaces. [Internet] [Doctoral dissertation]. University of Michigan; 2009. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2027.42/63769.

Council of Science Editors:

Snipes MA. Flat Forms in Banach Spaces. [Doctoral Dissertation]. University of Michigan; 2009. Available from: http://hdl.handle.net/2027.42/63769

4. Mackay, John M. Conformal Dimension and the Quasisymmetric Geometry of Metric Spaces.

Degree: PhD, Mathematics, 2008, University of Michigan

 The conformal dimension of a metric space measures the optimal dimension of the space under quasisymmetric deformations. We consider metric spaces that are locally connected… (more)

Subjects/Keywords: Conformal Dimension; Quasisymmetric Maps; Hyperbolic Group; Boundary at Infinity; Hausdorff Dimension; No Local Cut Points; Mathematics; Science

Page 1 Page 2 Page 3 Page 4 Page 5

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mackay, J. M. (2008). Conformal Dimension and the Quasisymmetric Geometry of Metric Spaces. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/60878

Chicago Manual of Style (16th Edition):

Mackay, John M. “Conformal Dimension and the Quasisymmetric Geometry of Metric Spaces.” 2008. Doctoral Dissertation, University of Michigan. Accessed December 04, 2020. http://hdl.handle.net/2027.42/60878.

MLA Handbook (7th Edition):

Mackay, John M. “Conformal Dimension and the Quasisymmetric Geometry of Metric Spaces.” 2008. Web. 04 Dec 2020.

Vancouver:

Mackay JM. Conformal Dimension and the Quasisymmetric Geometry of Metric Spaces. [Internet] [Doctoral dissertation]. University of Michigan; 2008. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2027.42/60878.

Council of Science Editors:

Mackay JM. Conformal Dimension and the Quasisymmetric Geometry of Metric Spaces. [Doctoral Dissertation]. University of Michigan; 2008. Available from: http://hdl.handle.net/2027.42/60878

5. Ferguson, Timothy James. Extremal Problems in Bergman Spaces.

Degree: PhD, Mathematics, 2011, University of Michigan

 We deal with extremal problems in Bergman spaces. If A^p denotes the Bergman space, then for any given functional phi not equal to zero in… (more)

Subjects/Keywords: Bergman; Extremal Problem; Hardy Space; Mathematics; Science

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ferguson, T. J. (2011). Extremal Problems in Bergman Spaces. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/84458

Chicago Manual of Style (16th Edition):

Ferguson, Timothy James. “Extremal Problems in Bergman Spaces.” 2011. Doctoral Dissertation, University of Michigan. Accessed December 04, 2020. http://hdl.handle.net/2027.42/84458.

MLA Handbook (7th Edition):

Ferguson, Timothy James. “Extremal Problems in Bergman Spaces.” 2011. Web. 04 Dec 2020.

Vancouver:

Ferguson TJ. Extremal Problems in Bergman Spaces. [Internet] [Doctoral dissertation]. University of Michigan; 2011. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2027.42/84458.

Council of Science Editors:

Ferguson TJ. Extremal Problems in Bergman Spaces. [Doctoral Dissertation]. University of Michigan; 2011. Available from: http://hdl.handle.net/2027.42/84458

6. Mishchenko, Andrey Mikhaylovich. Rigidity of Thin Disk Configurations.

Degree: PhD, Mathematics, 2012, University of Michigan

 The main result of this thesis is a rigidity theorem for configurations of closed disks in the plane. More precisely, fix two collections C and… (more)

Subjects/Keywords: Circle Packing; Fixed-point Index; Discrete Complex Analysis; Plane Geometry; Mathematics; Science

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mishchenko, A. M. (2012). Rigidity of Thin Disk Configurations. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/95930

Chicago Manual of Style (16th Edition):

Mishchenko, Andrey Mikhaylovich. “Rigidity of Thin Disk Configurations.” 2012. Doctoral Dissertation, University of Michigan. Accessed December 04, 2020. http://hdl.handle.net/2027.42/95930.

MLA Handbook (7th Edition):

Mishchenko, Andrey Mikhaylovich. “Rigidity of Thin Disk Configurations.” 2012. Web. 04 Dec 2020.

Vancouver:

Mishchenko AM. Rigidity of Thin Disk Configurations. [Internet] [Doctoral dissertation]. University of Michigan; 2012. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2027.42/95930.

Council of Science Editors:

Mishchenko AM. Rigidity of Thin Disk Configurations. [Doctoral Dissertation]. University of Michigan; 2012. Available from: http://hdl.handle.net/2027.42/95930

7. Kutluhan, Johanna Ceres Isabel Mangahas. A Recipe for Short-word Pseudo-Anosovs, and Group Growth.

Degree: PhD, Mathematics, 2010, University of Michigan

 The dissertation solves the short-word pseudo-Anosov problem posed by Fujiwara. Given any generating set of any pseudo-Anosov-containing subgroup of the mapping class group of a… (more)

Subjects/Keywords: Mapping Class Group; Pseudo-Anosov; Curve Complex; Mathematics; Science

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kutluhan, J. C. I. M. (2010). A Recipe for Short-word Pseudo-Anosovs, and Group Growth. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/77720

Chicago Manual of Style (16th Edition):

Kutluhan, Johanna Ceres Isabel Mangahas. “A Recipe for Short-word Pseudo-Anosovs, and Group Growth.” 2010. Doctoral Dissertation, University of Michigan. Accessed December 04, 2020. http://hdl.handle.net/2027.42/77720.

MLA Handbook (7th Edition):

Kutluhan, Johanna Ceres Isabel Mangahas. “A Recipe for Short-word Pseudo-Anosovs, and Group Growth.” 2010. Web. 04 Dec 2020.

Vancouver:

Kutluhan JCIM. A Recipe for Short-word Pseudo-Anosovs, and Group Growth. [Internet] [Doctoral dissertation]. University of Michigan; 2010. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2027.42/77720.

Council of Science Editors:

Kutluhan JCIM. A Recipe for Short-word Pseudo-Anosovs, and Group Growth. [Doctoral Dissertation]. University of Michigan; 2010. Available from: http://hdl.handle.net/2027.42/77720

8. Magid, Aaron D. Deformation Spaces of Kleinian Surface Groups are not Locally Connected.

Degree: PhD, Mathematics, 2009, University of Michigan

 For any closed surface S of genus g at least 2, we show that the deformation space of marked hyperbolic 3-manifolds homotopy equivalent to S,… (more)

Subjects/Keywords: Deformation Spaces of Hyperbolic 3-manifolds; Mathematics; Science

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Magid, A. D. (2009). Deformation Spaces of Kleinian Surface Groups are not Locally Connected. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/63689

Chicago Manual of Style (16th Edition):

Magid, Aaron D. “Deformation Spaces of Kleinian Surface Groups are not Locally Connected.” 2009. Doctoral Dissertation, University of Michigan. Accessed December 04, 2020. http://hdl.handle.net/2027.42/63689.

MLA Handbook (7th Edition):

Magid, Aaron D. “Deformation Spaces of Kleinian Surface Groups are not Locally Connected.” 2009. Web. 04 Dec 2020.

Vancouver:

Magid AD. Deformation Spaces of Kleinian Surface Groups are not Locally Connected. [Internet] [Doctoral dissertation]. University of Michigan; 2009. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2027.42/63689.

Council of Science Editors:

Magid AD. Deformation Spaces of Kleinian Surface Groups are not Locally Connected. [Doctoral Dissertation]. University of Michigan; 2009. Available from: http://hdl.handle.net/2027.42/63689


University of Michigan

9. Maruskin, Jared Michael. On the Dynamical Propagation of Subvolumes and on the Geometry and Variational Principles of Nonholonomic Systems.

Degree: PhD, Applied and Interdisciplinary Mathematics, 2008, University of Michigan

 Their are two main themes of this thesis. The first is the theory and application of the propagation of subvolumes in dynamical systems. We discuss… (more)

Subjects/Keywords: Nonholonomic Mechanics; Constrained Control; Space Situational Awareness; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maruskin, J. M. (2008). On the Dynamical Propagation of Subvolumes and on the Geometry and Variational Principles of Nonholonomic Systems. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/58444

Chicago Manual of Style (16th Edition):

Maruskin, Jared Michael. “On the Dynamical Propagation of Subvolumes and on the Geometry and Variational Principles of Nonholonomic Systems.” 2008. Doctoral Dissertation, University of Michigan. Accessed December 04, 2020. http://hdl.handle.net/2027.42/58444.

MLA Handbook (7th Edition):

Maruskin, Jared Michael. “On the Dynamical Propagation of Subvolumes and on the Geometry and Variational Principles of Nonholonomic Systems.” 2008. Web. 04 Dec 2020.

Vancouver:

Maruskin JM. On the Dynamical Propagation of Subvolumes and on the Geometry and Variational Principles of Nonholonomic Systems. [Internet] [Doctoral dissertation]. University of Michigan; 2008. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2027.42/58444.

Council of Science Editors:

Maruskin JM. On the Dynamical Propagation of Subvolumes and on the Geometry and Variational Principles of Nonholonomic Systems. [Doctoral Dissertation]. University of Michigan; 2008. Available from: http://hdl.handle.net/2027.42/58444


University of Michigan

10. Gong, Jasun. Derivations on Metric Measure Spaces.

Degree: PhD, Mathematics, 2008, University of Michigan

 In this thesis we study derivations on metric spaces with a prescribed measure. Such objects share similar properties as vector fields on smooth manifolds, such… (more)

Subjects/Keywords: Derivation; Metric; Measure; Lipschitz; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gong, J. (2008). Derivations on Metric Measure Spaces. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/60807

Chicago Manual of Style (16th Edition):

Gong, Jasun. “Derivations on Metric Measure Spaces.” 2008. Doctoral Dissertation, University of Michigan. Accessed December 04, 2020. http://hdl.handle.net/2027.42/60807.

MLA Handbook (7th Edition):

Gong, Jasun. “Derivations on Metric Measure Spaces.” 2008. Web. 04 Dec 2020.

Vancouver:

Gong J. Derivations on Metric Measure Spaces. [Internet] [Doctoral dissertation]. University of Michigan; 2008. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2027.42/60807.

Council of Science Editors:

Gong J. Derivations on Metric Measure Spaces. [Doctoral Dissertation]. University of Michigan; 2008. Available from: http://hdl.handle.net/2027.42/60807


University of Michigan

11. Vavrichek, Diane M. Accessibility and JSJ Decompositions of Groups.

Degree: PhD, Mathematics, 2008, University of Michigan

 In this dissertation, we present two separate results in geometric group theory. The first is an accessibility result for hyperbolic groups with no 2-torsion. The… (more)

Subjects/Keywords: Group Accessibility; JSJ Decompositions; Bass-Serre Theory; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vavrichek, D. M. (2008). Accessibility and JSJ Decompositions of Groups. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/60755

Chicago Manual of Style (16th Edition):

Vavrichek, Diane M. “Accessibility and JSJ Decompositions of Groups.” 2008. Doctoral Dissertation, University of Michigan. Accessed December 04, 2020. http://hdl.handle.net/2027.42/60755.

MLA Handbook (7th Edition):

Vavrichek, Diane M. “Accessibility and JSJ Decompositions of Groups.” 2008. Web. 04 Dec 2020.

Vancouver:

Vavrichek DM. Accessibility and JSJ Decompositions of Groups. [Internet] [Doctoral dissertation]. University of Michigan; 2008. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2027.42/60755.

Council of Science Editors:

Vavrichek DM. Accessibility and JSJ Decompositions of Groups. [Doctoral Dissertation]. University of Michigan; 2008. Available from: http://hdl.handle.net/2027.42/60755


University of Michigan

12. Williams, Marshall Clagett. Metric Currents and Differentiable Structures.

Degree: PhD, Mathematics, 2010, University of Michigan

 We investigate Ambrosio and Kirchheim's theory of currents in metric measure spaces, assuming the spaces admit generalized differentiation theorems as studied by Cheeger and Keith.… (more)

Subjects/Keywords: Metric Currents; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Williams, M. C. (2010). Metric Currents and Differentiable Structures. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/75910

Chicago Manual of Style (16th Edition):

Williams, Marshall Clagett. “Metric Currents and Differentiable Structures.” 2010. Doctoral Dissertation, University of Michigan. Accessed December 04, 2020. http://hdl.handle.net/2027.42/75910.

MLA Handbook (7th Edition):

Williams, Marshall Clagett. “Metric Currents and Differentiable Structures.” 2010. Web. 04 Dec 2020.

Vancouver:

Williams MC. Metric Currents and Differentiable Structures. [Internet] [Doctoral dissertation]. University of Michigan; 2010. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2027.42/75910.

Council of Science Editors:

Williams MC. Metric Currents and Differentiable Structures. [Doctoral Dissertation]. University of Michigan; 2010. Available from: http://hdl.handle.net/2027.42/75910


University of Michigan

13. Gomez Guerra, Jose Manuel. Models of Twisted K-theory.

Degree: PhD, Mathematics, 2008, University of Michigan

 This thesis concerns geometrical models in complete generality of twistings in complex K-theory, in particular of higher twistings. In the first three chapters we treat… (more)

Subjects/Keywords: Twisted K-theory; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gomez Guerra, J. M. (2008). Models of Twisted K-theory. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/60768

Chicago Manual of Style (16th Edition):

Gomez Guerra, Jose Manuel. “Models of Twisted K-theory.” 2008. Doctoral Dissertation, University of Michigan. Accessed December 04, 2020. http://hdl.handle.net/2027.42/60768.

MLA Handbook (7th Edition):

Gomez Guerra, Jose Manuel. “Models of Twisted K-theory.” 2008. Web. 04 Dec 2020.

Vancouver:

Gomez Guerra JM. Models of Twisted K-theory. [Internet] [Doctoral dissertation]. University of Michigan; 2008. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2027.42/60768.

Council of Science Editors:

Gomez Guerra JM. Models of Twisted K-theory. [Doctoral Dissertation]. University of Michigan; 2008. Available from: http://hdl.handle.net/2027.42/60768

.