Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"University of Manitoba" +contributor:("Luo, Yunhua (Mechanical Engineering) Telichev, Igor (Mechanical Engineering) Shalaby, Ahmed (Civil Engineering) Wang, Zhirui (Materials Science and Technology, University of Toronto)"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Manitoba

1. Polyzois, Ioannis. Prediction of the formation of adiabatic shear bands in high strength low alloy 4340 steel through analysis of grains and grain deformation.

Degree: Mechanical Engineering, 2014, University of Manitoba

High strain rate plastic deformation of metals results in the formation of localized zones of severe shear strain known as adiabatic shear bands (ASBs), which are a precursor to shear failure. The formation of ASBs in a high-strength low alloy steel, namely AISI 4340, was examined based on prior heat treatments (using different austenization and tempering temperatures), testing temperatures, and impact strain rates in order to map out grain size and grain deformation behaviour during the formation of ASBs. In the current experimental investigation, ASB formation was shown to be a microstructural phenomenon which depends on microstructural properties such as grain size, shape, orientation, and distribution of phases and hard particles—all controlled by the heat treatment process. Each grain is unique and its material properties are heterogeneous (based on its size, shape, and the complexity of the microstructure within the grain). Using measurements of grain size at various heat treatments as well as dynamic stress-strain data, a finite element model was developed using Matlab and explicit dynamic software LSDYNA to simulate the microstructural deformation of grains during the formation of ASBs. The model simulates the geometrical grain microstructure of steel in 2D using the Voronoi Tessellation algorithm and takes into account grain size, shape, orientation, and microstructural material property inhomogeneity between the grains and grain boundaries. The model takes advantage of the Smooth Particle Hydrodynamics (SPH) meshless method to simulate highly localized deformation as well as the Johnson-Cook Plasticity material model for defining the behavior of the steel at various heat treatments under high strain rate deformation.The Grain Model provides a superior representation of the kinematics of ASB formation on the microstructural level, based on grain size, shape and orientation. It is able to simulate the microstructural mechanism of ASB formation and grain refinement in AISI 4340 steel, more accurately and realistically than traditional macroscopic models, for a wide range of heat treatment and testing conditions. Advisors/Committee Members: Bassim, Nabil (Mechanical Engineering) (supervisor), Luo, Yunhua (Mechanical Engineering) Telichev, Igor (Mechanical Engineering) Shalaby, Ahmed (Civil Engineering) Wang, Zhirui (Materials Science and Technology, University of Toronto) (examiningcommittee).

Subjects/Keywords: adiabatic shear band; grain refinement; microstructure; simulations; high strength low alloy steel; heat treatment; grain size; meshless; Smooth Particle Hydrodynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Polyzois, I. (2014). Prediction of the formation of adiabatic shear bands in high strength low alloy 4340 steel through analysis of grains and grain deformation. (Thesis). University of Manitoba. Retrieved from http://hdl.handle.net/1993/30072

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Polyzois, Ioannis. “Prediction of the formation of adiabatic shear bands in high strength low alloy 4340 steel through analysis of grains and grain deformation.” 2014. Thesis, University of Manitoba. Accessed February 25, 2021. http://hdl.handle.net/1993/30072.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Polyzois, Ioannis. “Prediction of the formation of adiabatic shear bands in high strength low alloy 4340 steel through analysis of grains and grain deformation.” 2014. Web. 25 Feb 2021.

Vancouver:

Polyzois I. Prediction of the formation of adiabatic shear bands in high strength low alloy 4340 steel through analysis of grains and grain deformation. [Internet] [Thesis]. University of Manitoba; 2014. [cited 2021 Feb 25]. Available from: http://hdl.handle.net/1993/30072.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Polyzois I. Prediction of the formation of adiabatic shear bands in high strength low alloy 4340 steel through analysis of grains and grain deformation. [Thesis]. University of Manitoba; 2014. Available from: http://hdl.handle.net/1993/30072

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.