Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"University of Illinois – Urbana-Champaign" +contributor:("Tserunyan, Anush"). Showing records 1 – 11 of 11 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Illinois – Urbana-Champaign

1. Wagner, Zsolt Adam. On some problems in extremal, probabilistic and enumerative combinatorics.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

 This is a study of a small selection of problems from various areas of Combinatorics and Graph Theory, a fast developing field that provides a… (more)

Subjects/Keywords: extremal combinatorics; probabilistic combinatorics; enumerative combinatorics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wagner, Z. A. (2018). On some problems in extremal, probabilistic and enumerative combinatorics. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/100954

Chicago Manual of Style (16th Edition):

Wagner, Zsolt Adam. “On some problems in extremal, probabilistic and enumerative combinatorics.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 11, 2020. http://hdl.handle.net/2142/100954.

MLA Handbook (7th Edition):

Wagner, Zsolt Adam. “On some problems in extremal, probabilistic and enumerative combinatorics.” 2018. Web. 11 Jul 2020.

Vancouver:

Wagner ZA. On some problems in extremal, probabilistic and enumerative combinatorics. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2142/100954.

Council of Science Editors:

Wagner ZA. On some problems in extremal, probabilistic and enumerative combinatorics. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/100954


University of Illinois – Urbana-Champaign

2. Camacho Ahumada, Santiago. Truncation in differential Hahn fields.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

 Being closed under truncation for subsets of generalized series fields is a robust property in the sense that it is preserved under various algebraic and… (more)

Subjects/Keywords: Valued Fields; Transseries; Truncation; Differential Algebra; Hahn Fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Camacho Ahumada, S. (2018). Truncation in differential Hahn fields. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/100890

Chicago Manual of Style (16th Edition):

Camacho Ahumada, Santiago. “Truncation in differential Hahn fields.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 11, 2020. http://hdl.handle.net/2142/100890.

MLA Handbook (7th Edition):

Camacho Ahumada, Santiago. “Truncation in differential Hahn fields.” 2018. Web. 11 Jul 2020.

Vancouver:

Camacho Ahumada S. Truncation in differential Hahn fields. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2142/100890.

Council of Science Editors:

Camacho Ahumada S. Truncation in differential Hahn fields. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/100890


University of Illinois – Urbana-Champaign

3. Etedadialiabadi, Mahmood. Generic behaviour of a measure preserving transformation.

Degree: PhD, Mathematics, 2017, University of Illinois – Urbana-Champaign

 We study two different problems: generic behavior of a measure preserving transformation and extending partial isometries of a compact metric space. In Chapter 1, we… (more)

Subjects/Keywords: Measure preserving transformation; Measurable functions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Etedadialiabadi, M. (2017). Generic behaviour of a measure preserving transformation. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/99247

Chicago Manual of Style (16th Edition):

Etedadialiabadi, Mahmood. “Generic behaviour of a measure preserving transformation.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 11, 2020. http://hdl.handle.net/2142/99247.

MLA Handbook (7th Edition):

Etedadialiabadi, Mahmood. “Generic behaviour of a measure preserving transformation.” 2017. Web. 11 Jul 2020.

Vancouver:

Etedadialiabadi M. Generic behaviour of a measure preserving transformation. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2142/99247.

Council of Science Editors:

Etedadialiabadi M. Generic behaviour of a measure preserving transformation. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/99247

4. Bernshteyn, Anton. Coloring problems in combinatorics and descriptive set theory.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

 In this dissertation we study problems related to colorings of combinatorial structures both in the “classical” finite context and in the framework of descriptive set… (more)

Subjects/Keywords: coloring; probabilistic method; Lovasz Local Lemma; graphs; hypergraphs; list coloring; DP-coloring; descriptive combinatorics; measurable dynamics; generic dynamics; symbolic dynamics; weak containment

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bernshteyn, A. (2018). Coloring problems in combinatorics and descriptive set theory. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/101454

Chicago Manual of Style (16th Edition):

Bernshteyn, Anton. “Coloring problems in combinatorics and descriptive set theory.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 11, 2020. http://hdl.handle.net/2142/101454.

MLA Handbook (7th Edition):

Bernshteyn, Anton. “Coloring problems in combinatorics and descriptive set theory.” 2018. Web. 11 Jul 2020.

Vancouver:

Bernshteyn A. Coloring problems in combinatorics and descriptive set theory. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2142/101454.

Council of Science Editors:

Bernshteyn A. Coloring problems in combinatorics and descriptive set theory. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/101454

5. Delcourt, Michelle Jeannette. Viewing extremal and structural problems through a probabilistic lens.

Degree: PhD, Mathematics, 2017, University of Illinois – Urbana-Champaign

 This thesis focuses on using techniques from probability to solve problems from extremal and structural combinatorics. The main problem in Chapter 2 is determining the… (more)

Subjects/Keywords: Small subgraph conditioning method; Random regular graph; Intersecting families; Star decomposition; Structural graph theory; Extremal combinatorcs

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Delcourt, M. J. (2017). Viewing extremal and structural problems through a probabilistic lens. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/97669

Chicago Manual of Style (16th Edition):

Delcourt, Michelle Jeannette. “Viewing extremal and structural problems through a probabilistic lens.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 11, 2020. http://hdl.handle.net/2142/97669.

MLA Handbook (7th Edition):

Delcourt, Michelle Jeannette. “Viewing extremal and structural problems through a probabilistic lens.” 2017. Web. 11 Jul 2020.

Vancouver:

Delcourt MJ. Viewing extremal and structural problems through a probabilistic lens. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2142/97669.

Council of Science Editors:

Delcourt MJ. Viewing extremal and structural problems through a probabilistic lens. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/97669

6. Luo, Ruth. Extremal problems for cycles in graphs and hypergraphs.

Degree: PhD, Mathematics, 2019, University of Illinois – Urbana-Champaign

 In this thesis, we study several generalizations of Turan type problems in graphs and hypergraphs. In particular, we focus on graphs and hypergraphs without long… (more)

Subjects/Keywords: cycles; paths; Berge cycles; Berge paths; Turan problems; hypergraphs; extremal combinatorics; graph theory; hypergraph theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Luo, R. (2019). Extremal problems for cycles in graphs and hypergraphs. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/105633

Chicago Manual of Style (16th Edition):

Luo, Ruth. “Extremal problems for cycles in graphs and hypergraphs.” 2019. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 11, 2020. http://hdl.handle.net/2142/105633.

MLA Handbook (7th Edition):

Luo, Ruth. “Extremal problems for cycles in graphs and hypergraphs.” 2019. Web. 11 Jul 2020.

Vancouver:

Luo R. Extremal problems for cycles in graphs and hypergraphs. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2019. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2142/105633.

Council of Science Editors:

Luo R. Extremal problems for cycles in graphs and hypergraphs. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2019. Available from: http://hdl.handle.net/2142/105633

7. Nell, Travis. Distality and pairs.

Degree: PhD, Mathematics, 2019, University of Illinois – Urbana-Champaign

 This thesis studies certain expansions of o-minimal structures by unary predicates. The primary motivating question is that of the model theoretic property of distality, a… (more)

Subjects/Keywords: Model Theory of Ordered Structures; Distality; NIP; Dependent Theories

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nell, T. (2019). Distality and pairs. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/105647

Chicago Manual of Style (16th Edition):

Nell, Travis. “Distality and pairs.” 2019. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 11, 2020. http://hdl.handle.net/2142/105647.

MLA Handbook (7th Edition):

Nell, Travis. “Distality and pairs.” 2019. Web. 11 Jul 2020.

Vancouver:

Nell T. Distality and pairs. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2019. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2142/105647.

Council of Science Editors:

Nell T. Distality and pairs. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2019. Available from: http://hdl.handle.net/2142/105647

8. Hakobyan, Tigran. Algebraically closed fields with characters; differential-henselian monotone valued differential fields.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

 This thesis consists of two unrelated research projects. In the first project we study the model theory of the 2-sorted structure (F, C; χ), where… (more)

Subjects/Keywords: mathematical logic; model theory; quantifier elimination; NIP; fields; algebraically closed fields; characters; differential fields; valued fields; valued differential fields; d-henselian fields; monotone valued differential fields; Ax-Kochen-Ershov principle; Ax-Kochen principle

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hakobyan, T. (2018). Algebraically closed fields with characters; differential-henselian monotone valued differential fields. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/101483

Chicago Manual of Style (16th Edition):

Hakobyan, Tigran. “Algebraically closed fields with characters; differential-henselian monotone valued differential fields.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 11, 2020. http://hdl.handle.net/2142/101483.

MLA Handbook (7th Edition):

Hakobyan, Tigran. “Algebraically closed fields with characters; differential-henselian monotone valued differential fields.” 2018. Web. 11 Jul 2020.

Vancouver:

Hakobyan T. Algebraically closed fields with characters; differential-henselian monotone valued differential fields. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2142/101483.

Council of Science Editors:

Hakobyan T. Algebraically closed fields with characters; differential-henselian monotone valued differential fields. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/101483

9. Caulfield, Erin. Classifying expansions of the real field by complex subgroups.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

 In this thesis, we study expansions of the real field by multiplicative subgroups of the complex numbers. We first consider expansions by a subgroup generated… (more)

Subjects/Keywords: Expansions of the real field; Complex subgroups; Model theory

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Caulfield, E. (2018). Classifying expansions of the real field by complex subgroups. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/101541

Chicago Manual of Style (16th Edition):

Caulfield, Erin. “Classifying expansions of the real field by complex subgroups.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 11, 2020. http://hdl.handle.net/2142/101541.

MLA Handbook (7th Edition):

Caulfield, Erin. “Classifying expansions of the real field by complex subgroups.” 2018. Web. 11 Jul 2020.

Vancouver:

Caulfield E. Classifying expansions of the real field by complex subgroups. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2142/101541.

Council of Science Editors:

Caulfield E. Classifying expansions of the real field by complex subgroups. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/101541

10. Panagiotopoulos, Aristotelis. Structures and dynamics.

Degree: PhD, Mathematics, 2017, University of Illinois – Urbana-Champaign

 Our results are divided in three independent chapters. In Chapter 2, we show that if g is a generic isometry of a generic subspace X… (more)

Subjects/Keywords: Polish groups; Fraisse; Turbulence; Hjorth; Left invariant; Becker; Projective Fraisse; Infinite games; Borel complexity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Panagiotopoulos, A. (2017). Structures and dynamics. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/98378

Chicago Manual of Style (16th Edition):

Panagiotopoulos, Aristotelis. “Structures and dynamics.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 11, 2020. http://hdl.handle.net/2142/98378.

MLA Handbook (7th Edition):

Panagiotopoulos, Aristotelis. “Structures and dynamics.” 2017. Web. 11 Jul 2020.

Vancouver:

Panagiotopoulos A. Structures and dynamics. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2142/98378.

Council of Science Editors:

Panagiotopoulos A. Structures and dynamics. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/98378

11. Tran, Minh Chieu. Model theory of partially random structures.

Degree: PhD, Mathematics, 2019, University of Illinois – Urbana-Champaign

 Many interactions between mathematical objects, e.g. the interaction between the set of primes and the additive structure of N, can be usefully thought of as… (more)

Subjects/Keywords: Model theory; Random structures

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tran, M. C. (2019). Model theory of partially random structures. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/105670

Chicago Manual of Style (16th Edition):

Tran, Minh Chieu. “Model theory of partially random structures.” 2019. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 11, 2020. http://hdl.handle.net/2142/105670.

MLA Handbook (7th Edition):

Tran, Minh Chieu. “Model theory of partially random structures.” 2019. Web. 11 Jul 2020.

Vancouver:

Tran MC. Model theory of partially random structures. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2019. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2142/105670.

Council of Science Editors:

Tran MC. Model theory of partially random structures. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2019. Available from: http://hdl.handle.net/2142/105670

.