Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Language: English

You searched for +publisher:"University of Illinois – Urbana-Champaign" +contributor:("Soatto, Stefano"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Mobahi, Hossein. Optimization by Gaussian smoothing with application to geometric alignment.

Degree: PhD, 0112, 2013, University of Illinois – Urbana-Champaign

It is well-known that global optimization of a nonconvex function, in general, is computationally intractable. Nevertheless, many objective functions that we need to optimize may be nonconvex. In practice, when working with such a nonconvex function, a very natural heuristic is to employ a coarse-to-fine search for the global optimum. A popular deterministic procedure that exemplifies this idea can be summarized briefly as follows. Consider an unconstrained optimization task of minimizing some nonconvex function. One starts from a highly smoothed version of the objective function and hopes that the smoothing eliminates most spurious local minima. More ideally, one hopes that the highly smoothed function would be a convex function, whose global minimum can be found efficiently. Once the minimum of the smoothed function is found, one could gradually reduce the smoothing effect and follow the continuous path of the minimizer, eventually towards a minimum of the objective function. Empirically, people have observed that the minimum found this way has high chance to be the global minimum. Despite its empirical success, there has been little theoretical understanding about the effect of smoothing on optimization. This work rigorously studies some of the fundamental properties of the smoothing technique. In particular, we present a formal definition for the functions that can eventually become convex by smoothing. We present extremely simple sufficient condition for asymptotic convexity as well as a very simple form for an asymptotic minimizer. Our sufficient conditions hold when the objective function satisfies certain decay conditions. Our initial interest for studying this topic arise from its well-known use in geometric image alignment. The alignment problem can be formulated as an optimization task that minimizes the visual difference between the images by searching the space of transformations. Unfortunately, the cost function associated to this problem usually contains many local minima. Thus, unless very good initialization is provided, simple greedy optimization may lead to poor results. To improve the attained solution for the alignment task, we propose smoothing the objective function of the alignment task. In particular, we derive the theoretically correct image blur kernels that arise from (Gaussian) smoothing an alignment objective function. We show that, for smoothing the objective of common motion models, such as affine and homography, there exists a corresponding integral operator on the image space. We refer to the kernels of such integral operators as transformation kernels. Thus, instead of convolving the objective function with a Gaussian kernel in transformation space, we can equivalently compute an integral transform in the image space, which is much cheaper to compute. Advisors/Committee Members: Ma, Yi (advisor), Ma, Yi (Committee Chair), Huang, Thomas S. (committee member), Forsyth, David A. (committee member), Hoiem, Derek W. (committee member), Soatto, Stefano (committee member).

Subjects/Keywords: Nonconvex Optimization; Homotopy Continuation; Image Alignment; Point Cloud Alignment; Coarse-to-fine Optimization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mobahi, H. (2013). Optimization by Gaussian smoothing with application to geometric alignment. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/42330

Chicago Manual of Style (16th Edition):

Mobahi, Hossein. “Optimization by Gaussian smoothing with application to geometric alignment.” 2013. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed May 09, 2021. http://hdl.handle.net/2142/42330.

MLA Handbook (7th Edition):

Mobahi, Hossein. “Optimization by Gaussian smoothing with application to geometric alignment.” 2013. Web. 09 May 2021.

Vancouver:

Mobahi H. Optimization by Gaussian smoothing with application to geometric alignment. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2013. [cited 2021 May 09]. Available from: http://hdl.handle.net/2142/42330.

Council of Science Editors:

Mobahi H. Optimization by Gaussian smoothing with application to geometric alignment. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2013. Available from: http://hdl.handle.net/2142/42330

.