Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"University of Illinois – Urbana-Champaign" +contributor:("Hasegawa-Johnson, Mark A."). Showing records 1 – 30 of 61 total matches.

[1] [2] [3]

Search Limiters

Last 2 Years | English Only

Department

▼ Search Limiters


University of Illinois – Urbana-Champaign

1. Bharadwaj, Sujeeth. Multiview feature learning for speech recognition.

Degree: MS, 1200, 2012, University of Illinois – Urbana-Champaign

 In this thesis, we study the problem of learning a linear transformation of acoustic feature vectors for speech recognition, in a framework where apart from… (more)

Subjects/Keywords: Multiview learning; canonical correlation analysis; articulatory measurements; dimensionality reduction; acoustic features

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bharadwaj, S. (2012). Multiview feature learning for speech recognition. (Thesis). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/29785

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bharadwaj, Sujeeth. “Multiview feature learning for speech recognition.” 2012. Thesis, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/29785.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bharadwaj, Sujeeth. “Multiview feature learning for speech recognition.” 2012. Web. 21 Oct 2019.

Vancouver:

Bharadwaj S. Multiview feature learning for speech recognition. [Internet] [Thesis]. University of Illinois – Urbana-Champaign; 2012. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/29785.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bharadwaj S. Multiview feature learning for speech recognition. [Thesis]. University of Illinois – Urbana-Champaign; 2012. Available from: http://hdl.handle.net/2142/29785

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Urbana-Champaign

2. Zhang, Yang. Probabilistic generative modeling of speech.

Degree: MS, Electrical & Computer Engineering, 2015, University of Illinois – Urbana-Champaign

 Speech processing refers to a set of tasks that involve speech analysis and synthesis. Most speech processing algorithms model a subset of speech parameters of… (more)

Subjects/Keywords: Probabilistic acoustic tube; speech modeling; speech analysis; generative model

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, Y. (2015). Probabilistic generative modeling of speech. (Thesis). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/89006

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zhang, Yang. “Probabilistic generative modeling of speech.” 2015. Thesis, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/89006.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zhang, Yang. “Probabilistic generative modeling of speech.” 2015. Web. 21 Oct 2019.

Vancouver:

Zhang Y. Probabilistic generative modeling of speech. [Internet] [Thesis]. University of Illinois – Urbana-Champaign; 2015. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/89006.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zhang Y. Probabilistic generative modeling of speech. [Thesis]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/89006

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Urbana-Champaign

3. Hu, Chi. FSM-Based Pronunciation Modeling using Articulatory Phonological Code.

Degree: MS, 1200, 2010, University of Illinois – Urbana-Champaign

 According to articulatory phonology, the gestural score is an invariant speech representation. Though the timing schemes, i.e., the onsets and offsets, of the gestural activations… (more)

Subjects/Keywords: articulatory phonology; speech production; speech gesture; finite state machine

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hu, C. (2010). FSM-Based Pronunciation Modeling using Articulatory Phonological Code. (Thesis). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/16726

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hu, Chi. “FSM-Based Pronunciation Modeling using Articulatory Phonological Code.” 2010. Thesis, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/16726.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hu, Chi. “FSM-Based Pronunciation Modeling using Articulatory Phonological Code.” 2010. Web. 21 Oct 2019.

Vancouver:

Hu C. FSM-Based Pronunciation Modeling using Articulatory Phonological Code. [Internet] [Thesis]. University of Illinois – Urbana-Champaign; 2010. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/16726.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hu C. FSM-Based Pronunciation Modeling using Articulatory Phonological Code. [Thesis]. University of Illinois – Urbana-Champaign; 2010. Available from: http://hdl.handle.net/2142/16726

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Urbana-Champaign

4. Tidemann, Jeremy A. Characterization of the head-related transfer function using chirp and maximum length sequence excitation signals.

Degree: MS, 1200, 2011, University of Illinois – Urbana-Champaign

 Both chirp (or sweep) and maximum length sequence (MLS) excitation signals are used to obtain measurements of the head-related transfer function (HRTF) for the Knowles… (more)

Subjects/Keywords: Head-Related Transfer Function (HRTF); Knowles electronic manikin for acoustic research (KEMAR); maximum length sequence (MLS); maximum length sequence; Head-related Impulse Response (HRIR); chirp; sweep; excitation signal; impulse response; auditory system; sound localization; system characterization; localization; virtual reality; probe microphone; synchronization; perception of sound; 3D hearing; 3D sound

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tidemann, J. A. (2011). Characterization of the head-related transfer function using chirp and maximum length sequence excitation signals. (Thesis). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/24345

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Tidemann, Jeremy A. “Characterization of the head-related transfer function using chirp and maximum length sequence excitation signals.” 2011. Thesis, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/24345.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Tidemann, Jeremy A. “Characterization of the head-related transfer function using chirp and maximum length sequence excitation signals.” 2011. Web. 21 Oct 2019.

Vancouver:

Tidemann JA. Characterization of the head-related transfer function using chirp and maximum length sequence excitation signals. [Internet] [Thesis]. University of Illinois – Urbana-Champaign; 2011. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/24345.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Tidemann JA. Characterization of the head-related transfer function using chirp and maximum length sequence excitation signals. [Thesis]. University of Illinois – Urbana-Champaign; 2011. Available from: http://hdl.handle.net/2142/24345

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Urbana-Champaign

5. Sharma, Harsh. Acoustic model adaptation for recognition of dysarthric speech.

Degree: PhD, 1200, 2012, University of Illinois – Urbana-Champaign

 Speech production errors characteristic of dysarthria are chiefly responsible for the low accuracy of automatic speech recognition (ASR) when used by people diagnosed with the… (more)

Subjects/Keywords: Hidden Markov Model (HMM); model adaptation; acoustic model; acoustic model adaptation; dysarthria; speech recognition; automatic speech recognition (ASR); assistive technology; isolated word recognition; UA-Speech; motor speech disorder

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sharma, H. (2012). Acoustic model adaptation for recognition of dysarthric speech. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/31966

Chicago Manual of Style (16th Edition):

Sharma, Harsh. “Acoustic model adaptation for recognition of dysarthric speech.” 2012. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/31966.

MLA Handbook (7th Edition):

Sharma, Harsh. “Acoustic model adaptation for recognition of dysarthric speech.” 2012. Web. 21 Oct 2019.

Vancouver:

Sharma H. Acoustic model adaptation for recognition of dysarthric speech. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2012. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/31966.

Council of Science Editors:

Sharma H. Acoustic model adaptation for recognition of dysarthric speech. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2012. Available from: http://hdl.handle.net/2142/31966


University of Illinois – Urbana-Champaign

6. Huang, Jui Ting. Semi-supervised learning for acoustic and prosodic modeling in speech applications.

Degree: PhD, 1200, 2012, University of Illinois – Urbana-Champaign

 Enormous amounts of audio recordings of human speech are essential ingredients for building reliable statistical models for many speech applications, such as automatic speech recognition… (more)

Subjects/Keywords: Semi-Supervised Learning; Speech Recognition; Acoustic Modeling; Prosodic Modeling

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huang, J. T. (2012). Semi-supervised learning for acoustic and prosodic modeling in speech applications. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/32006

Chicago Manual of Style (16th Edition):

Huang, Jui Ting. “Semi-supervised learning for acoustic and prosodic modeling in speech applications.” 2012. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/32006.

MLA Handbook (7th Edition):

Huang, Jui Ting. “Semi-supervised learning for acoustic and prosodic modeling in speech applications.” 2012. Web. 21 Oct 2019.

Vancouver:

Huang JT. Semi-supervised learning for acoustic and prosodic modeling in speech applications. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2012. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/32006.

Council of Science Editors:

Huang JT. Semi-supervised learning for acoustic and prosodic modeling in speech applications. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2012. Available from: http://hdl.handle.net/2142/32006


University of Illinois – Urbana-Champaign

7. Bharadwaj, Sujeeth Subramanya. A theory of (almost) zero resource speech recognition.

Degree: PhD, Electrical & Computer Engr, 2015, University of Illinois – Urbana-Champaign

 Automatic speech recognition has matured into a commercially successful technology, enabling voice-based interfaces for smartphones, smart TVs, and many other consumer devices. The overwhelming popularity,… (more)

Subjects/Keywords: Speech recognition; Unsupervised learning; PAC-Bayesian theory; Language Modeling; Acoustic Event Detection; anomaly detection

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bharadwaj, S. S. (2015). A theory of (almost) zero resource speech recognition. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/78343

Chicago Manual of Style (16th Edition):

Bharadwaj, Sujeeth Subramanya. “A theory of (almost) zero resource speech recognition.” 2015. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/78343.

MLA Handbook (7th Edition):

Bharadwaj, Sujeeth Subramanya. “A theory of (almost) zero resource speech recognition.” 2015. Web. 21 Oct 2019.

Vancouver:

Bharadwaj SS. A theory of (almost) zero resource speech recognition. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2015. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/78343.

Council of Science Editors:

Bharadwaj SS. A theory of (almost) zero resource speech recognition. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/78343


University of Illinois – Urbana-Champaign

8. Huang, Po-Sen. Shallow and deep learning for audio and natural language processing.

Degree: PhD, Electrical & Computer Engr, 2015, University of Illinois – Urbana-Champaign

 Many machine learning algorithms can be viewed as optimization problems that seek the optimum hypothesis in a hypothesis space. To model the complex dependencies in… (more)

Subjects/Keywords: deep learning; large-scale kernel machines; monaural source separation; speech recognition; information retrieval

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huang, P. (2015). Shallow and deep learning for audio and natural language processing. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/78466

Chicago Manual of Style (16th Edition):

Huang, Po-Sen. “Shallow and deep learning for audio and natural language processing.” 2015. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/78466.

MLA Handbook (7th Edition):

Huang, Po-Sen. “Shallow and deep learning for audio and natural language processing.” 2015. Web. 21 Oct 2019.

Vancouver:

Huang P. Shallow and deep learning for audio and natural language processing. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2015. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/78466.

Council of Science Editors:

Huang P. Shallow and deep learning for audio and natural language processing. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/78466


University of Illinois – Urbana-Champaign

9. Kantor, Arthur. Pronunciation modeling for large vocabulary speech recognition.

Degree: PhD, 0112, 2011, University of Illinois – Urbana-Champaign

 The large pronunciation variability of words in conversational speech is one of the major causes of low accuracy in automatic speech recognition (ASR). Many pronunciation… (more)

Subjects/Keywords: automatic speech recognition (ASR); Large-Vocabulary Continuous Speech Recognition (LVCSR); Pronunciation modeling; Conversational speech recognition

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kantor, A. (2011). Pronunciation modeling for large vocabulary speech recognition. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/18276

Chicago Manual of Style (16th Edition):

Kantor, Arthur. “Pronunciation modeling for large vocabulary speech recognition.” 2011. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/18276.

MLA Handbook (7th Edition):

Kantor, Arthur. “Pronunciation modeling for large vocabulary speech recognition.” 2011. Web. 21 Oct 2019.

Vancouver:

Kantor A. Pronunciation modeling for large vocabulary speech recognition. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2011. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/18276.

Council of Science Editors:

Kantor A. Pronunciation modeling for large vocabulary speech recognition. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2011. Available from: http://hdl.handle.net/2142/18276


University of Illinois – Urbana-Champaign

10. Zhuang, Xiaodan. Modeling audio and visual cues for real-world event detection.

Degree: PhD, 1200, 2011, University of Illinois – Urbana-Champaign

 Audio-visual event detection aims to identify semantically defined events that reveal human activities. Most previous literature focused on restricted highlight events, and depended on highly… (more)

Subjects/Keywords: hidden Markov model; Gaussian mixture model; Acoustic Event Detection; multimedia retrieval; branch and bound

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhuang, X. (2011). Modeling audio and visual cues for real-world event detection. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/24439

Chicago Manual of Style (16th Edition):

Zhuang, Xiaodan. “Modeling audio and visual cues for real-world event detection.” 2011. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/24439.

MLA Handbook (7th Edition):

Zhuang, Xiaodan. “Modeling audio and visual cues for real-world event detection.” 2011. Web. 21 Oct 2019.

Vancouver:

Zhuang X. Modeling audio and visual cues for real-world event detection. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2011. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/24439.

Council of Science Editors:

Zhuang X. Modeling audio and visual cues for real-world event detection. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2011. Available from: http://hdl.handle.net/2142/24439


University of Illinois – Urbana-Champaign

11. Kim, Lae-Hoon. Statistical Model Based Multi-Microphone Speech Processing: Toward Overcoming Mismatch Problem.

Degree: PhD, 1200, 2010, University of Illinois – Urbana-Champaign

 In this thesis, a joint optimal method for clean speech estimation and ASR in a mismatched condition will be described with a unified speech model… (more)

Subjects/Keywords: Independent component analysis; beamforming; Expectation maximization beamforming (EMB); robust automatic speech recognition; missing feature

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kim, L. (2010). Statistical Model Based Multi-Microphone Speech Processing: Toward Overcoming Mismatch Problem. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/16839

Chicago Manual of Style (16th Edition):

Kim, Lae-Hoon. “Statistical Model Based Multi-Microphone Speech Processing: Toward Overcoming Mismatch Problem.” 2010. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/16839.

MLA Handbook (7th Edition):

Kim, Lae-Hoon. “Statistical Model Based Multi-Microphone Speech Processing: Toward Overcoming Mismatch Problem.” 2010. Web. 21 Oct 2019.

Vancouver:

Kim L. Statistical Model Based Multi-Microphone Speech Processing: Toward Overcoming Mismatch Problem. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2010. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/16839.

Council of Science Editors:

Kim L. Statistical Model Based Multi-Microphone Speech Processing: Toward Overcoming Mismatch Problem. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2010. Available from: http://hdl.handle.net/2142/16839


University of Illinois – Urbana-Champaign

12. Zhang, Yang. Application of generative models in speech processing tasks.

Degree: PhD, Electrical & Computer Engr, 2017, University of Illinois – Urbana-Champaign

 Generative probabilistic and neural models of the speech signal are shown to be effective in speech synthesis and speech enhancement, where generating natural and clean… (more)

Subjects/Keywords: Generative models; Speech synthesis; Speech enhancement

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, Y. (2017). Application of generative models in speech processing tasks. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/98268

Chicago Manual of Style (16th Edition):

Zhang, Yang. “Application of generative models in speech processing tasks.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/98268.

MLA Handbook (7th Edition):

Zhang, Yang. “Application of generative models in speech processing tasks.” 2017. Web. 21 Oct 2019.

Vancouver:

Zhang Y. Application of generative models in speech processing tasks. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/98268.

Council of Science Editors:

Zhang Y. Application of generative models in speech processing tasks. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/98268


University of Illinois – Urbana-Champaign

13. Yang, Huiguang. From image co-segmentation to discrete optimization in computer vision - the exploration on graphical model, statistical physics, energy minimization, and integer programming.

Degree: PhD, Electrical & Computer Engr, 2016, University of Illinois – Urbana-Champaign

 This dissertation aims to explore the ideas and frameworks for solving the discrete optimization problem in computer vision. Much of the work is inspired by… (more)

Subjects/Keywords: image co-segmentation; graphical model; energy minimization; integer programming; statistical physics; discrete optimization; Mixed-Integer Quadratic Programming (MIQP); clustering; local topology consistency check; sparse optimization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yang, H. (2016). From image co-segmentation to discrete optimization in computer vision - the exploration on graphical model, statistical physics, energy minimization, and integer programming. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/95489

Chicago Manual of Style (16th Edition):

Yang, Huiguang. “From image co-segmentation to discrete optimization in computer vision - the exploration on graphical model, statistical physics, energy minimization, and integer programming.” 2016. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/95489.

MLA Handbook (7th Edition):

Yang, Huiguang. “From image co-segmentation to discrete optimization in computer vision - the exploration on graphical model, statistical physics, energy minimization, and integer programming.” 2016. Web. 21 Oct 2019.

Vancouver:

Yang H. From image co-segmentation to discrete optimization in computer vision - the exploration on graphical model, statistical physics, energy minimization, and integer programming. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2016. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/95489.

Council of Science Editors:

Yang H. From image co-segmentation to discrete optimization in computer vision - the exploration on graphical model, statistical physics, energy minimization, and integer programming. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2016. Available from: http://hdl.handle.net/2142/95489


University of Illinois – Urbana-Champaign

14. Chu, Xinqi. Layout-aware mixture models for patch-based image representation and analysis.

Degree: PhD, 1200, 2015, University of Illinois – Urbana-Champaign

 Image and video representation and modeling is an important topic in computer vision and image processing. An image model provides an abstraction of the large… (more)

Subjects/Keywords: computer vision; image recognition; image reconstruction; layout modelling image representation; discriminative models; generative models; latent variable models; colorization; joint detection and recognition; Expectation Maximization (EM)-Learning; image representation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chu, X. (2015). Layout-aware mixture models for patch-based image representation and analysis. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/72973

Chicago Manual of Style (16th Edition):

Chu, Xinqi. “Layout-aware mixture models for patch-based image representation and analysis.” 2015. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/72973.

MLA Handbook (7th Edition):

Chu, Xinqi. “Layout-aware mixture models for patch-based image representation and analysis.” 2015. Web. 21 Oct 2019.

Vancouver:

Chu X. Layout-aware mixture models for patch-based image representation and analysis. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2015. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/72973.

Council of Science Editors:

Chu X. Layout-aware mixture models for patch-based image representation and analysis. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/72973


University of Illinois – Urbana-Champaign

15. Singh, Abhishek. Learning to super-resolve images using self-similarities.

Degree: PhD, Electrical & Computer Engr, 2015, University of Illinois – Urbana-Champaign

 The single image super-resolution problem entails estimating a high-resolution version of a low-resolution image. Recent studies have shown that high resolution versions of the patches… (more)

Subjects/Keywords: Self-Similarity; Image Enhancement; Image Super-Resolution

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Singh, A. (2015). Learning to super-resolve images using self-similarities. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/78325

Chicago Manual of Style (16th Edition):

Singh, Abhishek. “Learning to super-resolve images using self-similarities.” 2015. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/78325.

MLA Handbook (7th Edition):

Singh, Abhishek. “Learning to super-resolve images using self-similarities.” 2015. Web. 21 Oct 2019.

Vancouver:

Singh A. Learning to super-resolve images using self-similarities. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2015. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/78325.

Council of Science Editors:

Singh A. Learning to super-resolve images using self-similarities. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/78325


University of Illinois – Urbana-Champaign

16. Kim, Minje. Audio computing in the wild: frameworks for big data and small computers.

Degree: PhD, Computer Science, 2016, University of Illinois – Urbana-Champaign

 This dissertation presents some machine learning algorithms that are designed to process as much data as needed while spending the least possible amount of resources,… (more)

Subjects/Keywords: Machine Learning; Signal Processing; Blind Source Separation; Big Data; Deep Learning; Neural Networks

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kim, M. (2016). Audio computing in the wild: frameworks for big data and small computers. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/90573

Chicago Manual of Style (16th Edition):

Kim, Minje. “Audio computing in the wild: frameworks for big data and small computers.” 2016. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/90573.

MLA Handbook (7th Edition):

Kim, Minje. “Audio computing in the wild: frameworks for big data and small computers.” 2016. Web. 21 Oct 2019.

Vancouver:

Kim M. Audio computing in the wild: frameworks for big data and small computers. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2016. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/90573.

Council of Science Editors:

Kim M. Audio computing in the wild: frameworks for big data and small computers. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2016. Available from: http://hdl.handle.net/2142/90573


University of Illinois – Urbana-Champaign

17. Pahwa, Ramanpreet Singh. 3D sensing and mapping using mobile color and depth sensors.

Degree: PhD, Electrical & Computer Engr, 2017, University of Illinois – Urbana-Champaign

 An important recent development in the visual information acquisition field is the emergence of low cost depth sensors that measure the scalar distance between the… (more)

Subjects/Keywords: Depth cameras; Calibration; Object proposals; Image stitching; Cylindrical image

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pahwa, R. S. (2017). 3D sensing and mapping using mobile color and depth sensors. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/98125

Chicago Manual of Style (16th Edition):

Pahwa, Ramanpreet Singh. “3D sensing and mapping using mobile color and depth sensors.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/98125.

MLA Handbook (7th Edition):

Pahwa, Ramanpreet Singh. “3D sensing and mapping using mobile color and depth sensors.” 2017. Web. 21 Oct 2019.

Vancouver:

Pahwa RS. 3D sensing and mapping using mobile color and depth sensors. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/98125.

Council of Science Editors:

Pahwa RS. 3D sensing and mapping using mobile color and depth sensors. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/98125

18. Yang, Xuesong. Machine learning approaches to improving mispronunciation detection on an imbalanced corpus.

Degree: MS, Electrical & Computer Engineering, 2015, University of Illinois – Urbana-Champaign

 This thesis reports the investigations into the task of phone-level pronunciation error detection, the performance of which is heavily affected by the imbalanced distribution of… (more)

Subjects/Keywords: Imbalanced Learning; Sampling Methods; Pronunciation Error Detection; Spoken Language Assessment; Computer Assisted Language Learning

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yang, X. (2015). Machine learning approaches to improving mispronunciation detection on an imbalanced corpus. (Thesis). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/89050

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yang, Xuesong. “Machine learning approaches to improving mispronunciation detection on an imbalanced corpus.” 2015. Thesis, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/89050.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yang, Xuesong. “Machine learning approaches to improving mispronunciation detection on an imbalanced corpus.” 2015. Web. 21 Oct 2019.

Vancouver:

Yang X. Machine learning approaches to improving mispronunciation detection on an imbalanced corpus. [Internet] [Thesis]. University of Illinois – Urbana-Champaign; 2015. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/89050.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yang X. Machine learning approaches to improving mispronunciation detection on an imbalanced corpus. [Thesis]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/89050

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

19. Huang, Po-Sen. Non-speech Acoustic Event Detection Using Multimodal Information.

Degree: MS, 1200, 2012, University of Illinois – Urbana-Champaign

 Non-speech acoustic event detection (AED) aims to recognize events that are relevant to human activities associated with audio information. Much previous research has been focused… (more)

Subjects/Keywords: Acoustic Event Detection; Optical Flow; Hidden Markov Models; Multistream Hidden Markov Models; Coupled Hidden Markov Models; Gaussian Mixture Models; Support Vector Machines; Sensor Fusion; Footstep Detection; Person Detection

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huang, P. (2012). Non-speech Acoustic Event Detection Using Multimodal Information. (Thesis). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/29841

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Huang, Po-Sen. “Non-speech Acoustic Event Detection Using Multimodal Information.” 2012. Thesis, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/29841.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Huang, Po-Sen. “Non-speech Acoustic Event Detection Using Multimodal Information.” 2012. Web. 21 Oct 2019.

Vancouver:

Huang P. Non-speech Acoustic Event Detection Using Multimodal Information. [Internet] [Thesis]. University of Illinois – Urbana-Champaign; 2012. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/29841.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Huang P. Non-speech Acoustic Event Detection Using Multimodal Information. [Thesis]. University of Illinois – Urbana-Champaign; 2012. Available from: http://hdl.handle.net/2142/29841

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

20. Co, Christopher. Room reconstruction and navigation using acoustically obtained room impulse responses and a mobile robot platform.

Degree: MS, 1200, 2013, University of Illinois – Urbana-Champaign

 This work explores the design and effectiveness of a robot that uses a combination of active sonar and a pseudo-random acoustic signal to navigate and… (more)

Subjects/Keywords: Room Impulse Response; Quadratic Interpolation; Room Reconstruction; Maximum Length Sequence; Sonar; Robot Mapping; Robot Navigation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Co, C. (2013). Room reconstruction and navigation using acoustically obtained room impulse responses and a mobile robot platform. (Thesis). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/42203

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Co, Christopher. “Room reconstruction and navigation using acoustically obtained room impulse responses and a mobile robot platform.” 2013. Thesis, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/42203.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Co, Christopher. “Room reconstruction and navigation using acoustically obtained room impulse responses and a mobile robot platform.” 2013. Web. 21 Oct 2019.

Vancouver:

Co C. Room reconstruction and navigation using acoustically obtained room impulse responses and a mobile robot platform. [Internet] [Thesis]. University of Illinois – Urbana-Champaign; 2013. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/42203.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Co C. Room reconstruction and navigation using acoustically obtained room impulse responses and a mobile robot platform. [Thesis]. University of Illinois – Urbana-Champaign; 2013. Available from: http://hdl.handle.net/2142/42203

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

21. Chen, Austin. Automatic classification of electronic music and speech/music audio content.

Degree: MS, 1200, 2014, University of Illinois – Urbana-Champaign

 Automatic audio categorization has great potential for application in the maintenance and usage of large and constantly growing media databases; accordingly, much research has been… (more)

Subjects/Keywords: speech/music discrimination; genre classification; Music information retrieval; Gaussian mixture model; Audio content analysis; Audio classification

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, A. (2014). Automatic classification of electronic music and speech/music audio content. (Thesis). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/49569

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chen, Austin. “Automatic classification of electronic music and speech/music audio content.” 2014. Thesis, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/49569.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chen, Austin. “Automatic classification of electronic music and speech/music audio content.” 2014. Web. 21 Oct 2019.

Vancouver:

Chen A. Automatic classification of electronic music and speech/music audio content. [Internet] [Thesis]. University of Illinois – Urbana-Champaign; 2014. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/49569.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen A. Automatic classification of electronic music and speech/music audio content. [Thesis]. University of Illinois – Urbana-Champaign; 2014. Available from: http://hdl.handle.net/2142/49569

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

22. Soberal, Daniel. Face recognition using hidden Markov model supervectors.

Degree: MS, 1200, 2015, University of Illinois – Urbana-Champaign

 This project attempts to boost the results of face recognition algorithms already established to perform face recognition by augmenting the architecture and using HMM-based supervector… (more)

Subjects/Keywords: Hidden Markov Model (HMM); supervectors; Gaussian mixture models; Kullback-Leibler divergence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Soberal, D. (2015). Face recognition using hidden Markov model supervectors. (Thesis). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/72839

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Soberal, Daniel. “Face recognition using hidden Markov model supervectors.” 2015. Thesis, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/72839.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Soberal, Daniel. “Face recognition using hidden Markov model supervectors.” 2015. Web. 21 Oct 2019.

Vancouver:

Soberal D. Face recognition using hidden Markov model supervectors. [Internet] [Thesis]. University of Illinois – Urbana-Champaign; 2015. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/72839.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Soberal D. Face recognition using hidden Markov model supervectors. [Thesis]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/72839

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Urbana-Champaign

23. Lin, Kai-Hsiang. Saliency in audio and visual signals.

Degree: PhD, 1200, 2015, University of Illinois – Urbana-Champaign

 This dissertation studies saliency and its applications in audio and visual signals. For each portion of the signal, its saliency means the likelihood of attracting… (more)

Subjects/Keywords: Saliency Detection; License Plate Detection; Foreground Detection; Audio Visualization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lin, K. (2015). Saliency in audio and visual signals. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/73072

Chicago Manual of Style (16th Edition):

Lin, Kai-Hsiang. “Saliency in audio and visual signals.” 2015. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/73072.

MLA Handbook (7th Edition):

Lin, Kai-Hsiang. “Saliency in audio and visual signals.” 2015. Web. 21 Oct 2019.

Vancouver:

Lin K. Saliency in audio and visual signals. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2015. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/73072.

Council of Science Editors:

Lin K. Saliency in audio and visual signals. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/73072

24. Li, Chen. Automatic discovery of complex causality.

Degree: PhD, Linguistics, 2015, University of Illinois – Urbana-Champaign

 This study entails the understanding of and the development of a computational method for automatically extracting complex expressions in language that correspond to event to… (more)

Subjects/Keywords: Computational Linguistics; Natural Language Processing (NLP); automata theory; formal semantics; data mining; causality; social networks; social media; Hidden Markov Model (HMM); genetic algorithm; data prediction; big data

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, C. (2015). Automatic discovery of complex causality. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/88057

Chicago Manual of Style (16th Edition):

Li, Chen. “Automatic discovery of complex causality.” 2015. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/88057.

MLA Handbook (7th Edition):

Li, Chen. “Automatic discovery of complex causality.” 2015. Web. 21 Oct 2019.

Vancouver:

Li C. Automatic discovery of complex causality. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2015. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/88057.

Council of Science Editors:

Li C. Automatic discovery of complex causality. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/88057


University of Illinois – Urbana-Champaign

25. Majure, Lydia. Developmental model of sensorimotor map acquisition for a humanoid robot.

Degree: PhD, 1200, 2013, University of Illinois – Urbana-Champaign

 Cognitive developmental robotics unites machine learning and neuroscience with the aim of creating robots which display the robustness and efficiency of human cognition. This document… (more)

Subjects/Keywords: Cognitive Developmental Robotics; Artificial Intelligence; Humanoid Robotics; Machine Learning; Neural Dynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Majure, L. (2013). Developmental model of sensorimotor map acquisition for a humanoid robot. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/45648

Chicago Manual of Style (16th Edition):

Majure, Lydia. “Developmental model of sensorimotor map acquisition for a humanoid robot.” 2013. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/45648.

MLA Handbook (7th Edition):

Majure, Lydia. “Developmental model of sensorimotor map acquisition for a humanoid robot.” 2013. Web. 21 Oct 2019.

Vancouver:

Majure L. Developmental model of sensorimotor map acquisition for a humanoid robot. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2013. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/45648.

Council of Science Editors:

Majure L. Developmental model of sensorimotor map acquisition for a humanoid robot. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2013. Available from: http://hdl.handle.net/2142/45648


University of Illinois – Urbana-Champaign

26. Tsai, Min-Hsuan. On recommendations in heterogeneous social media networks.

Degree: PhD, 1200, 2014, University of Illinois – Urbana-Champaign

 In this dissertation, we study the problem of social media recommendations with a heavy emphasis on exploiting social, content and contextual information. The problem of… (more)

Subjects/Keywords: heterogeneous network; recommendations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tsai, M. (2014). On recommendations in heterogeneous social media networks. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/46830

Chicago Manual of Style (16th Edition):

Tsai, Min-Hsuan. “On recommendations in heterogeneous social media networks.” 2014. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/46830.

MLA Handbook (7th Edition):

Tsai, Min-Hsuan. “On recommendations in heterogeneous social media networks.” 2014. Web. 21 Oct 2019.

Vancouver:

Tsai M. On recommendations in heterogeneous social media networks. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2014. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/46830.

Council of Science Editors:

Tsai M. On recommendations in heterogeneous social media networks. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2014. Available from: http://hdl.handle.net/2142/46830


University of Illinois – Urbana-Champaign

27. Qi, Guo-Jun. Information trust, inference and transfer in social and information networks.

Degree: PhD, 1200, 2014, University of Illinois – Urbana-Champaign

 In this thesis, our overarching goal is to aggregate crowdsourced information that is collected from computing systems based on social networks and represented in information… (more)

Subjects/Keywords: information trust; information inference; information transfer; information networks; social networks

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Qi, G. (2014). Information trust, inference and transfer in social and information networks. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/46854

Chicago Manual of Style (16th Edition):

Qi, Guo-Jun. “Information trust, inference and transfer in social and information networks.” 2014. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/46854.

MLA Handbook (7th Edition):

Qi, Guo-Jun. “Information trust, inference and transfer in social and information networks.” 2014. Web. 21 Oct 2019.

Vancouver:

Qi G. Information trust, inference and transfer in social and information networks. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2014. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/46854.

Council of Science Editors:

Qi G. Information trust, inference and transfer in social and information networks. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2014. Available from: http://hdl.handle.net/2142/46854


University of Illinois – Urbana-Champaign

28. Niehaus, Logan. Robots as language users: a computational model for pragmatic word learning.

Degree: PhD, 1200, 2014, University of Illinois – Urbana-Champaign

 The development of machines capable of natural linguistic interaction with humans has been an active and diverse area of research for decades. More recent frameworks,… (more)

Subjects/Keywords: cognitive robotics; language acquisition; cognitive modeling; pragmatics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Niehaus, L. (2014). Robots as language users: a computational model for pragmatic word learning. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/50430

Chicago Manual of Style (16th Edition):

Niehaus, Logan. “Robots as language users: a computational model for pragmatic word learning.” 2014. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/50430.

MLA Handbook (7th Edition):

Niehaus, Logan. “Robots as language users: a computational model for pragmatic word learning.” 2014. Web. 21 Oct 2019.

Vancouver:

Niehaus L. Robots as language users: a computational model for pragmatic word learning. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2014. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/50430.

Council of Science Editors:

Niehaus L. Robots as language users: a computational model for pragmatic word learning. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2014. Available from: http://hdl.handle.net/2142/50430


University of Illinois – Urbana-Champaign

29. Wendt, Luke Adam. Optimal nonlinear control and estimation using global domain linearization.

Degree: PhD, Electrical & Computer Engr, 2017, University of Illinois – Urbana-Champaign

 Alan Turing teaches that cognition is symbol processing. Norbert Wiener teaches that intelligence rests on feedback control. Thus, there are discrete symbols and continuous sensory-motor… (more)

Subjects/Keywords: Approximate; Domain; Optimal; Nonlinear; Control; Estimation; Linearization; Generalized; Radial; Basis; Continuous; Dynamic; Differential; Feedback

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wendt, L. A. (2017). Optimal nonlinear control and estimation using global domain linearization. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/98334

Chicago Manual of Style (16th Edition):

Wendt, Luke Adam. “Optimal nonlinear control and estimation using global domain linearization.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/98334.

MLA Handbook (7th Edition):

Wendt, Luke Adam. “Optimal nonlinear control and estimation using global domain linearization.” 2017. Web. 21 Oct 2019.

Vancouver:

Wendt LA. Optimal nonlinear control and estimation using global domain linearization. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/98334.

Council of Science Editors:

Wendt LA. Optimal nonlinear control and estimation using global domain linearization. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/98334


University of Illinois – Urbana-Champaign

30. Li, Feipeng. Perceptual cues of consonant sounds and impact of sensorineural hearing loss on speech perception.

Degree: PhD, 1200, 2010, University of Illinois – Urbana-Champaign

 This research investigates the impact of various types of cochlear hearing loss and mask- ing noise on the perception of basic speech sounds based on… (more)

Subjects/Keywords: speech perception; hearing loss; consonant; perceptual cue

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, F. (2010). Perceptual cues of consonant sounds and impact of sensorineural hearing loss on speech perception. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/14603

Chicago Manual of Style (16th Edition):

Li, Feipeng. “Perceptual cues of consonant sounds and impact of sensorineural hearing loss on speech perception.” 2010. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 21, 2019. http://hdl.handle.net/2142/14603.

MLA Handbook (7th Edition):

Li, Feipeng. “Perceptual cues of consonant sounds and impact of sensorineural hearing loss on speech perception.” 2010. Web. 21 Oct 2019.

Vancouver:

Li F. Perceptual cues of consonant sounds and impact of sensorineural hearing loss on speech perception. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2010. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2142/14603.

Council of Science Editors:

Li F. Perceptual cues of consonant sounds and impact of sensorineural hearing loss on speech perception. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2010. Available from: http://hdl.handle.net/2142/14603

[1] [2] [3]

.