Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

Language: English

You searched for +publisher:"University of Illinois – Chicago" +contributor:("Takloo-Bighash, Ramin"). Showing records 1 – 10 of 10 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Illinois – Chicago

1. Schneider, Jonathan. Diagrammatic Theories of 1- and 2- Dimensional Knots.

Degree: 2016, University of Illinois – Chicago

 A meta-theory is described whereby any diagrammatic knot theory may be defined by specifying diagrams and moves. This is done explicitly in dimensions 1 and… (more)

Subjects/Keywords: knot theory; knot diagrams; surface knot theory; 2-knot theory; virtual knots; virtual knot theory; welded knots

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schneider, J. (2016). Diagrammatic Theories of 1- and 2- Dimensional Knots. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/20811

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Schneider, Jonathan. “Diagrammatic Theories of 1- and 2- Dimensional Knots.” 2016. Thesis, University of Illinois – Chicago. Accessed July 10, 2020. http://hdl.handle.net/10027/20811.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Schneider, Jonathan. “Diagrammatic Theories of 1- and 2- Dimensional Knots.” 2016. Web. 10 Jul 2020.

Vancouver:

Schneider J. Diagrammatic Theories of 1- and 2- Dimensional Knots. [Internet] [Thesis]. University of Illinois – Chicago; 2016. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10027/20811.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Schneider J. Diagrammatic Theories of 1- and 2- Dimensional Knots. [Thesis]. University of Illinois – Chicago; 2016. Available from: http://hdl.handle.net/10027/20811

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

2. Zuo, Huaiqing. Complete Coordinate-free Characterization of Isolated Homogeneous Singularities and Derivations of the Moduli.

Degree: 2012, University of Illinois – Chicago

 Three main topics are stated in this thesis. The first topic is about complete characterization of homogeneous isolated hypersurface singularities which will be considered in… (more)

Subjects/Keywords: Isolated singularities; Derivations; Geometric genus; Irregularity; Weighted homogeneous singularities; Homogeneous singularities; Milnor number; Tjurina number

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zuo, H. (2012). Complete Coordinate-free Characterization of Isolated Homogeneous Singularities and Derivations of the Moduli. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9290

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zuo, Huaiqing. “Complete Coordinate-free Characterization of Isolated Homogeneous Singularities and Derivations of the Moduli.” 2012. Thesis, University of Illinois – Chicago. Accessed July 10, 2020. http://hdl.handle.net/10027/9290.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zuo, Huaiqing. “Complete Coordinate-free Characterization of Isolated Homogeneous Singularities and Derivations of the Moduli.” 2012. Web. 10 Jul 2020.

Vancouver:

Zuo H. Complete Coordinate-free Characterization of Isolated Homogeneous Singularities and Derivations of the Moduli. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10027/9290.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zuo H. Complete Coordinate-free Characterization of Isolated Homogeneous Singularities and Derivations of the Moduli. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/9290

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

3. Wechter, Matthew A. Differential Operators on Finite Purely Inseparable Extensions.

Degree: 2013, University of Illinois – Chicago

 We study the the differential operators of a finite modular field extension. Using the Jacobson-Bourbaki Theorem, we establish criteria for when a subalgebra of the… (more)

Subjects/Keywords: Galois theory; purely inseparable extension; higher derivation; modular extension

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wechter, M. A. (2013). Differential Operators on Finite Purely Inseparable Extensions. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/10166

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wechter, Matthew A. “Differential Operators on Finite Purely Inseparable Extensions.” 2013. Thesis, University of Illinois – Chicago. Accessed July 10, 2020. http://hdl.handle.net/10027/10166.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wechter, Matthew A. “Differential Operators on Finite Purely Inseparable Extensions.” 2013. Web. 10 Jul 2020.

Vancouver:

Wechter MA. Differential Operators on Finite Purely Inseparable Extensions. [Internet] [Thesis]. University of Illinois – Chicago; 2013. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10027/10166.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wechter MA. Differential Operators on Finite Purely Inseparable Extensions. [Thesis]. University of Illinois – Chicago; 2013. Available from: http://hdl.handle.net/10027/10166

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

4. Krieger, Holly C. Primitive Prime Divisors for Unicritical Polynomials.

Degree: 2013, University of Illinois – Chicago

 We prove the finiteness of the Zsigmondy set associated to critical orbits of polynomials. In the case of unicritical polynomials over the rational numbers, we… (more)

Subjects/Keywords: complex dynamics; number theory; arithmetic dynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Krieger, H. C. (2013). Primitive Prime Divisors for Unicritical Polynomials. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/10357

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Krieger, Holly C. “Primitive Prime Divisors for Unicritical Polynomials.” 2013. Thesis, University of Illinois – Chicago. Accessed July 10, 2020. http://hdl.handle.net/10027/10357.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Krieger, Holly C. “Primitive Prime Divisors for Unicritical Polynomials.” 2013. Web. 10 Jul 2020.

Vancouver:

Krieger HC. Primitive Prime Divisors for Unicritical Polynomials. [Internet] [Thesis]. University of Illinois – Chicago; 2013. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10027/10357.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Krieger HC. Primitive Prime Divisors for Unicritical Polynomials. [Thesis]. University of Illinois – Chicago; 2013. Available from: http://hdl.handle.net/10027/10357

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Robinson, Christine A. On Siegel Maass Wave Forms of Weight 0.

Degree: 2013, University of Illinois – Chicago

 Progress has been made toward a Saito-Kurokawa lift, including a non-holomorphic Shimura lift and a lift from the non-holomorphic analogue of the Kohnen plus space… (more)

Subjects/Keywords: number theory; automorphic forms; Siegel modular forms

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Robinson, C. A. (2013). On Siegel Maass Wave Forms of Weight 0. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9982

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Robinson, Christine A. “On Siegel Maass Wave Forms of Weight 0.” 2013. Thesis, University of Illinois – Chicago. Accessed July 10, 2020. http://hdl.handle.net/10027/9982.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Robinson, Christine A. “On Siegel Maass Wave Forms of Weight 0.” 2013. Web. 10 Jul 2020.

Vancouver:

Robinson CA. On Siegel Maass Wave Forms of Weight 0. [Internet] [Thesis]. University of Illinois – Chicago; 2013. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10027/9982.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Robinson CA. On Siegel Maass Wave Forms of Weight 0. [Thesis]. University of Illinois – Chicago; 2013. Available from: http://hdl.handle.net/10027/9982

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Dexter, Kathleen D. Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four.

Degree: 2012, University of Illinois – Chicago

 We compute the asymptotic expansion of Whittaker functions of an element of the maximal torus for principal series representations. We consider irreducible, reducible, and singular… (more)

Subjects/Keywords: Whittaker; asymptotic expansion; principal series; singular

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dexter, K. D. (2012). Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9591

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Dexter, Kathleen D. “Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four.” 2012. Thesis, University of Illinois – Chicago. Accessed July 10, 2020. http://hdl.handle.net/10027/9591.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Dexter, Kathleen D. “Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four.” 2012. Web. 10 Jul 2020.

Vancouver:

Dexter KD. Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10027/9591.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dexter KD. Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/9591

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

7. Bird, Katherine A. Dade's Conjecture in the Finite Special Unitary Groups.

Degree: 2012, University of Illinois – Chicago

 The theory of p-modular representations of a finite group G for a fixed prime number p was developed by Richard Brauer. One of the main… (more)

Subjects/Keywords: modular representations; blocks; finite special unitary group

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bird, K. A. (2012). Dade's Conjecture in the Finite Special Unitary Groups. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9119

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bird, Katherine A. “Dade's Conjecture in the Finite Special Unitary Groups.” 2012. Thesis, University of Illinois – Chicago. Accessed July 10, 2020. http://hdl.handle.net/10027/9119.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bird, Katherine A. “Dade's Conjecture in the Finite Special Unitary Groups.” 2012. Web. 10 Jul 2020.

Vancouver:

Bird KA. Dade's Conjecture in the Finite Special Unitary Groups. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10027/9119.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bird KA. Dade's Conjecture in the Finite Special Unitary Groups. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/9119

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

8. Reschke, Paul. Cohomological Insights for Complex Surface Automorphisms with Positive Entropy.

Degree: 2013, University of Illinois – Chicago

 I equate dynamical properties (e.g., positive entropy, existence of a periodic curve) of complex surface automorphisms with properties of the pull-back actions of such automorphisms… (more)

Subjects/Keywords: Complex Dynamics; Entropy; Kahler Surfaces; Cohomological Actions; Complex Tori

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Reschke, P. (2013). Cohomological Insights for Complex Surface Automorphisms with Positive Entropy. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/10162

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Reschke, Paul. “Cohomological Insights for Complex Surface Automorphisms with Positive Entropy.” 2013. Thesis, University of Illinois – Chicago. Accessed July 10, 2020. http://hdl.handle.net/10027/10162.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Reschke, Paul. “Cohomological Insights for Complex Surface Automorphisms with Positive Entropy.” 2013. Web. 10 Jul 2020.

Vancouver:

Reschke P. Cohomological Insights for Complex Surface Automorphisms with Positive Entropy. [Internet] [Thesis]. University of Illinois – Chicago; 2013. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10027/10162.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Reschke P. Cohomological Insights for Complex Surface Automorphisms with Positive Entropy. [Thesis]. University of Illinois – Chicago; 2013. Available from: http://hdl.handle.net/10027/10162

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

9. Drueck, Fred R. Limit Models, Superlimit Models, and Two Cardinal Problems in Abstract Elementary Classes.

Degree: 2013, University of Illinois – Chicago

 This dissertation examines three main topics, the topic of defining "superstability" for abstract elementary classes (AECs), uniqueness of limit models, and two cardinal models in… (more)

Subjects/Keywords: Limit Models; Superlimit Models; Two Cardinal Problems; two cardinal models; two cardinal; 2 cardinal; 2 cardinal problems; 2 cardinal model; gap-2 transfer; gap-2; Abstract Elementary Classes; mathematical logic; uniqueness of limit models; morasses; lessmann

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Drueck, F. R. (2013). Limit Models, Superlimit Models, and Two Cardinal Problems in Abstract Elementary Classes. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9996

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Drueck, Fred R. “Limit Models, Superlimit Models, and Two Cardinal Problems in Abstract Elementary Classes.” 2013. Thesis, University of Illinois – Chicago. Accessed July 10, 2020. http://hdl.handle.net/10027/9996.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Drueck, Fred R. “Limit Models, Superlimit Models, and Two Cardinal Problems in Abstract Elementary Classes.” 2013. Web. 10 Jul 2020.

Vancouver:

Drueck FR. Limit Models, Superlimit Models, and Two Cardinal Problems in Abstract Elementary Classes. [Internet] [Thesis]. University of Illinois – Chicago; 2013. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10027/9996.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Drueck FR. Limit Models, Superlimit Models, and Two Cardinal Problems in Abstract Elementary Classes. [Thesis]. University of Illinois – Chicago; 2013. Available from: http://hdl.handle.net/10027/9996

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

10. Freitag, James E. Model Theory and Differential Algebraic Geometry.

Degree: 2012, University of Illinois – Chicago

This thesis studies problems in differential algebraic geometry and model theory. Advisors/Committee Members: Marker, David (advisor), Takloo-Bighash, Ramin (committee member), Gillet, Henri (committee member), Moosa, Rahim (committee member), Baldwin, John (committee member), Rosendal, Christian (committee member).

Subjects/Keywords: Model Theory; Differential Algebra; Algebraic Geometry; Commutative Algebra; Logic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Freitag, J. E. (2012). Model Theory and Differential Algebraic Geometry. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9302

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Freitag, James E. “Model Theory and Differential Algebraic Geometry.” 2012. Thesis, University of Illinois – Chicago. Accessed July 10, 2020. http://hdl.handle.net/10027/9302.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Freitag, James E. “Model Theory and Differential Algebraic Geometry.” 2012. Web. 10 Jul 2020.

Vancouver:

Freitag JE. Model Theory and Differential Algebraic Geometry. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10027/9302.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Freitag JE. Model Theory and Differential Algebraic Geometry. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/9302

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.