Advanced search options

Sorted by: relevance · author · university · date | New search

Language: English ^{❌}

You searched for `+publisher:"University of Illinois – Chicago" +contributor:("Shipley, Brooke")`

.
Showing records 1 – 4 of
4 total matches.

▼ Search Limiters

1. Robinson, Christine A. On Siegel Maass Wave Forms of Weight 0.

Degree: 2013, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/9982

► Progress has been made toward a Saito-Kurokawa lift, including a non-holomorphic Shimura lift and a lift from the non-holomorphic analogue of the Kohnen plus space…
(more)

Subjects/Keywords: number theory; automorphic forms; Siegel modular forms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Robinson, C. A. (2013). On Siegel Maass Wave Forms of Weight 0. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9982

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Robinson, Christine A. “On Siegel Maass Wave Forms of Weight 0.” 2013. Thesis, University of Illinois – Chicago. Accessed July 09, 2020. http://hdl.handle.net/10027/9982.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Robinson, Christine A. “On Siegel Maass Wave Forms of Weight 0.” 2013. Web. 09 Jul 2020.

Vancouver:

Robinson CA. On Siegel Maass Wave Forms of Weight 0. [Internet] [Thesis]. University of Illinois – Chicago; 2013. [cited 2020 Jul 09]. Available from: http://hdl.handle.net/10027/9982.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Robinson CA. On Siegel Maass Wave Forms of Weight 0. [Thesis]. University of Illinois – Chicago; 2013. Available from: http://hdl.handle.net/10027/9982

Not specified: Masters Thesis or Doctoral Dissertation

2. Dexter, Kathleen D. Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four.

Degree: 2012, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/9591

► We compute the asymptotic expansion of Whittaker functions of an element of the maximal torus for principal series representations. We consider irreducible, reducible, and singular…
(more)

Subjects/Keywords: Whittaker; asymptotic expansion; principal series; singular

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dexter, K. D. (2012). Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9591

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Dexter, Kathleen D. “Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four.” 2012. Thesis, University of Illinois – Chicago. Accessed July 09, 2020. http://hdl.handle.net/10027/9591.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Dexter, Kathleen D. “Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four.” 2012. Web. 09 Jul 2020.

Vancouver:

Dexter KD. Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2020 Jul 09]. Available from: http://hdl.handle.net/10027/9591.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dexter KD. Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/9591

Not specified: Masters Thesis or Doctoral Dissertation

3. Bird, Katherine A. Dade's Conjecture in the Finite Special Unitary Groups.

Degree: 2012, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/9119

► The theory of p-modular representations of a finite group G for a fixed prime number p was developed by Richard Brauer. One of the main…
(more)

Subjects/Keywords: modular representations; blocks; finite special unitary group

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bird, K. A. (2012). Dade's Conjecture in the Finite Special Unitary Groups. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9119

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bird, Katherine A. “Dade's Conjecture in the Finite Special Unitary Groups.” 2012. Thesis, University of Illinois – Chicago. Accessed July 09, 2020. http://hdl.handle.net/10027/9119.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bird, Katherine A. “Dade's Conjecture in the Finite Special Unitary Groups.” 2012. Web. 09 Jul 2020.

Vancouver:

Bird KA. Dade's Conjecture in the Finite Special Unitary Groups. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2020 Jul 09]. Available from: http://hdl.handle.net/10027/9119.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bird KA. Dade's Conjecture in the Finite Special Unitary Groups. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/9119

Not specified: Masters Thesis or Doctoral Dissertation

4. Guzman, Rosemary K. Hyperbolic 3-manifolds with k-free fundamental group.

Degree: 2012, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/8926

► The results of Marc Culler and Peter Shalen for 2,3 or 4-free hyperbolic 3-manifolds are contingent on properties specific to and special about rank two…
(more)

Subjects/Keywords: hyperbolic 3-manifolds; k-free; 4-free; fundamental group; actions without inversions on a tree; rank-3 subgroups of a free group; 5-free

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Guzman, R. K. (2012). Hyperbolic 3-manifolds with k-free fundamental group. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/8926

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Guzman, Rosemary K. “Hyperbolic 3-manifolds with k-free fundamental group.” 2012. Thesis, University of Illinois – Chicago. Accessed July 09, 2020. http://hdl.handle.net/10027/8926.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Guzman, Rosemary K. “Hyperbolic 3-manifolds with k-free fundamental group.” 2012. Web. 09 Jul 2020.

Vancouver:

Guzman RK. Hyperbolic 3-manifolds with k-free fundamental group. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2020 Jul 09]. Available from: http://hdl.handle.net/10027/8926.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Guzman RK. Hyperbolic 3-manifolds with k-free fundamental group. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/8926

Not specified: Masters Thesis or Doctoral Dissertation