Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"University of Illinois – Chicago" +contributor:("Radford, David"). Showing records 1 – 5 of 5 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Illinois – Chicago

1. Schneider, Jonathan. Diagrammatic Theories of 1- and 2- Dimensional Knots.

Degree: 2016, University of Illinois – Chicago

 A meta-theory is described whereby any diagrammatic knot theory may be defined by specifying diagrams and moves. This is done explicitly in dimensions 1 and… (more)

Subjects/Keywords: knot theory; knot diagrams; surface knot theory; 2-knot theory; virtual knots; virtual knot theory; welded knots

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schneider, J. (2016). Diagrammatic Theories of 1- and 2- Dimensional Knots. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/20811

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Schneider, Jonathan. “Diagrammatic Theories of 1- and 2- Dimensional Knots.” 2016. Thesis, University of Illinois – Chicago. Accessed July 15, 2020. http://hdl.handle.net/10027/20811.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Schneider, Jonathan. “Diagrammatic Theories of 1- and 2- Dimensional Knots.” 2016. Web. 15 Jul 2020.

Vancouver:

Schneider J. Diagrammatic Theories of 1- and 2- Dimensional Knots. [Internet] [Thesis]. University of Illinois – Chicago; 2016. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10027/20811.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Schneider J. Diagrammatic Theories of 1- and 2- Dimensional Knots. [Thesis]. University of Illinois – Chicago; 2016. Available from: http://hdl.handle.net/10027/20811

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

2. Simpson, David H. The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles.

Degree: 2019, University of Illinois – Chicago

 We examine the relation between Ribbon Hopf Algebras and 1-1 Tangles  – knot diagrams that are cut at a point with the ends pulled apart.… (more)

Subjects/Keywords: Knot Invariants; Hopf Algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Simpson, D. H. (2019). The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/23681

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Simpson, David H. “The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles.” 2019. Thesis, University of Illinois – Chicago. Accessed July 15, 2020. http://hdl.handle.net/10027/23681.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Simpson, David H. “The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles.” 2019. Web. 15 Jul 2020.

Vancouver:

Simpson DH. The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles. [Internet] [Thesis]. University of Illinois – Chicago; 2019. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10027/23681.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Simpson DH. The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles. [Thesis]. University of Illinois – Chicago; 2019. Available from: http://hdl.handle.net/10027/23681

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Robinson, Christine A. On Siegel Maass Wave Forms of Weight 0.

Degree: 2013, University of Illinois – Chicago

 Progress has been made toward a Saito-Kurokawa lift, including a non-holomorphic Shimura lift and a lift from the non-holomorphic analogue of the Kohnen plus space… (more)

Subjects/Keywords: number theory; automorphic forms; Siegel modular forms

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Robinson, C. A. (2013). On Siegel Maass Wave Forms of Weight 0. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9982

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Robinson, Christine A. “On Siegel Maass Wave Forms of Weight 0.” 2013. Thesis, University of Illinois – Chicago. Accessed July 15, 2020. http://hdl.handle.net/10027/9982.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Robinson, Christine A. “On Siegel Maass Wave Forms of Weight 0.” 2013. Web. 15 Jul 2020.

Vancouver:

Robinson CA. On Siegel Maass Wave Forms of Weight 0. [Internet] [Thesis]. University of Illinois – Chicago; 2013. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10027/9982.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Robinson CA. On Siegel Maass Wave Forms of Weight 0. [Thesis]. University of Illinois – Chicago; 2013. Available from: http://hdl.handle.net/10027/9982

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Dexter, Kathleen D. Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four.

Degree: 2012, University of Illinois – Chicago

 We compute the asymptotic expansion of Whittaker functions of an element of the maximal torus for principal series representations. We consider irreducible, reducible, and singular… (more)

Subjects/Keywords: Whittaker; asymptotic expansion; principal series; singular

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dexter, K. D. (2012). Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9591

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Dexter, Kathleen D. “Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four.” 2012. Thesis, University of Illinois – Chicago. Accessed July 15, 2020. http://hdl.handle.net/10027/9591.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Dexter, Kathleen D. “Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four.” 2012. Web. 15 Jul 2020.

Vancouver:

Dexter KD. Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10027/9591.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dexter KD. Some Results on the Representation Theory of the Symplectic Similitude Group of Order Four. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/9591

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Kaestner, Aaron. On Applications of Parity in Virtual Knot Theory.

Degree: 2012, University of Illinois – Chicago

 We investigate applications of parity in virtual knot theory and extend this philosophy to virtual links. This allows us to generalize previously known invariants -… (more)

Subjects/Keywords: Virtual Knot; Virtual Link; Jones Polynomial; Bracket Polynomial; Arrow Polynomial; Graphical Coefficient; Categorification; Biquandle; Parity; Parity Biquandle

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kaestner, A. (2012). On Applications of Parity in Virtual Knot Theory. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9624

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kaestner, Aaron. “On Applications of Parity in Virtual Knot Theory.” 2012. Thesis, University of Illinois – Chicago. Accessed July 15, 2020. http://hdl.handle.net/10027/9624.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kaestner, Aaron. “On Applications of Parity in Virtual Knot Theory.” 2012. Web. 15 Jul 2020.

Vancouver:

Kaestner A. On Applications of Parity in Virtual Knot Theory. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10027/9624.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kaestner A. On Applications of Parity in Virtual Knot Theory. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/9624

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.