Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"University of Illinois – Chicago" +contributor:("Gillet, Henri"). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Illinois – Chicago

1. Bayindir, Haldun Ozgur. Topological Equivalences of E-infinity Differential Graded Algebras.

Degree: 2018, University of Illinois – Chicago

 Two DGAs are said to be topologically equivalent when the corresponding Eilenberg–Mac Lane ring spectra are weakly equivalent as ring spectra. Quasi-isomorphic DGAs are topologically… (more)

Subjects/Keywords: Dyer-Lashof operations; Differential graded algebras; Commutative ring spectra; Obstruction theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bayindir, H. O. (2018). Topological Equivalences of E-infinity Differential Graded Algebras. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/23145

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bayindir, Haldun Ozgur. “Topological Equivalences of E-infinity Differential Graded Algebras.” 2018. Thesis, University of Illinois – Chicago. Accessed June 07, 2020. http://hdl.handle.net/10027/23145.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bayindir, Haldun Ozgur. “Topological Equivalences of E-infinity Differential Graded Algebras.” 2018. Web. 07 Jun 2020.

Vancouver:

Bayindir HO. Topological Equivalences of E-infinity Differential Graded Algebras. [Internet] [Thesis]. University of Illinois – Chicago; 2018. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/10027/23145.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bayindir HO. Topological Equivalences of E-infinity Differential Graded Algebras. [Thesis]. University of Illinois – Chicago; 2018. Available from: http://hdl.handle.net/10027/23145

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

2. Berner, Joseph. Shape Theory in Homotopy Theory and Algebraic Geometry.

Degree: 2018, University of Illinois – Chicago

 This work defines the étale homotopy type in the context of non-archimedean geometry, in both Berkovich’s and Huber’s formalisms. To do this we take the… (more)

Subjects/Keywords: Homotopy Theory; Algebraic Geometry; Higher Category Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Berner, J. (2018). Shape Theory in Homotopy Theory and Algebraic Geometry. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/23085

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Berner, Joseph. “Shape Theory in Homotopy Theory and Algebraic Geometry.” 2018. Thesis, University of Illinois – Chicago. Accessed June 07, 2020. http://hdl.handle.net/10027/23085.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Berner, Joseph. “Shape Theory in Homotopy Theory and Algebraic Geometry.” 2018. Web. 07 Jun 2020.

Vancouver:

Berner J. Shape Theory in Homotopy Theory and Algebraic Geometry. [Internet] [Thesis]. University of Illinois – Chicago; 2018. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/10027/23085.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Berner J. Shape Theory in Homotopy Theory and Algebraic Geometry. [Thesis]. University of Illinois – Chicago; 2018. Available from: http://hdl.handle.net/10027/23085

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

3. Freitag, James E. Model Theory and Differential Algebraic Geometry.

Degree: 2012, University of Illinois – Chicago

This thesis studies problems in differential algebraic geometry and model theory. Advisors/Committee Members: Marker, David (advisor), Takloo-Bighash, Ramin (committee member), Gillet, Henri (committee member), Moosa, Rahim (committee member), Baldwin, John (committee member), Rosendal, Christian (committee member).

Subjects/Keywords: Model Theory; Differential Algebra; Algebraic Geometry; Commutative Algebra; Logic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Freitag, J. E. (2012). Model Theory and Differential Algebraic Geometry. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9302

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Freitag, James E. “Model Theory and Differential Algebraic Geometry.” 2012. Thesis, University of Illinois – Chicago. Accessed June 07, 2020. http://hdl.handle.net/10027/9302.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Freitag, James E. “Model Theory and Differential Algebraic Geometry.” 2012. Web. 07 Jun 2020.

Vancouver:

Freitag JE. Model Theory and Differential Algebraic Geometry. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/10027/9302.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Freitag JE. Model Theory and Differential Algebraic Geometry. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/9302

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

4. Gu, Xing. On the Cohomology of the Classifying Spaces of Projective Unitary Groups and Applications.

Degree: 2017, University of Illinois – Chicago

 In this paper we calculate the integral cohomology of the classifying spaces of projective unitary groups of arbitrary degrees, up to dimension 10. We apply… (more)

Subjects/Keywords: Brauer groups; period-index problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gu, X. (2017). On the Cohomology of the Classifying Spaces of Projective Unitary Groups and Applications. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/22060

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gu, Xing. “On the Cohomology of the Classifying Spaces of Projective Unitary Groups and Applications.” 2017. Thesis, University of Illinois – Chicago. Accessed June 07, 2020. http://hdl.handle.net/10027/22060.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gu, Xing. “On the Cohomology of the Classifying Spaces of Projective Unitary Groups and Applications.” 2017. Web. 07 Jun 2020.

Vancouver:

Gu X. On the Cohomology of the Classifying Spaces of Projective Unitary Groups and Applications. [Internet] [Thesis]. University of Illinois – Chicago; 2017. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/10027/22060.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gu X. On the Cohomology of the Classifying Spaces of Projective Unitary Groups and Applications. [Thesis]. University of Illinois – Chicago; 2017. Available from: http://hdl.handle.net/10027/22060

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

5. Moulinos, Tasos. Topological K-theory and Invertibility.

Degree: 2018, University of Illinois – Chicago

 In this dissertation, a theory of topological K-theory of dg-categories relative to an arbitrary base scheme is developed. This is then used to study the… (more)

Subjects/Keywords: K-theory; scheme; Azumaya algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moulinos, T. (2018). Topological K-theory and Invertibility. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/23144

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Moulinos, Tasos. “Topological K-theory and Invertibility.” 2018. Thesis, University of Illinois – Chicago. Accessed June 07, 2020. http://hdl.handle.net/10027/23144.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Moulinos, Tasos. “Topological K-theory and Invertibility.” 2018. Web. 07 Jun 2020.

Vancouver:

Moulinos T. Topological K-theory and Invertibility. [Internet] [Thesis]. University of Illinois – Chicago; 2018. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/10027/23144.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Moulinos T. Topological K-theory and Invertibility. [Thesis]. University of Illinois – Chicago; 2018. Available from: http://hdl.handle.net/10027/23144

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

6. Wechter, Matthew A. Differential Operators on Finite Purely Inseparable Extensions.

Degree: 2013, University of Illinois – Chicago

 We study the the differential operators of a finite modular field extension. Using the Jacobson-Bourbaki Theorem, we establish criteria for when a subalgebra of the… (more)

Subjects/Keywords: Galois theory; purely inseparable extension; higher derivation; modular extension

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wechter, M. A. (2013). Differential Operators on Finite Purely Inseparable Extensions. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/10166

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wechter, Matthew A. “Differential Operators on Finite Purely Inseparable Extensions.” 2013. Thesis, University of Illinois – Chicago. Accessed June 07, 2020. http://hdl.handle.net/10027/10166.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wechter, Matthew A. “Differential Operators on Finite Purely Inseparable Extensions.” 2013. Web. 07 Jun 2020.

Vancouver:

Wechter MA. Differential Operators on Finite Purely Inseparable Extensions. [Internet] [Thesis]. University of Illinois – Chicago; 2013. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/10027/10166.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wechter MA. Differential Operators on Finite Purely Inseparable Extensions. [Thesis]. University of Illinois – Chicago; 2013. Available from: http://hdl.handle.net/10027/10166

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.