Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"University of Illinois – Chicago" +contributor:("DeMarco, Laura"). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Illinois – Chicago

1. Krieger, Holly C. Primitive Prime Divisors for Unicritical Polynomials.

Degree: 2013, University of Illinois – Chicago

 We prove the finiteness of the Zsigmondy set associated to critical orbits of polynomials. In the case of unicritical polynomials over the rational numbers, we… (more)

Subjects/Keywords: complex dynamics; number theory; arithmetic dynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Krieger, H. C. (2013). Primitive Prime Divisors for Unicritical Polynomials. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/10357

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Krieger, Holly C. “Primitive Prime Divisors for Unicritical Polynomials.” 2013. Thesis, University of Illinois – Chicago. Accessed July 03, 2020. http://hdl.handle.net/10027/10357.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Krieger, Holly C. “Primitive Prime Divisors for Unicritical Polynomials.” 2013. Web. 03 Jul 2020.

Vancouver:

Krieger HC. Primitive Prime Divisors for Unicritical Polynomials. [Internet] [Thesis]. University of Illinois – Chicago; 2013. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/10027/10357.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Krieger HC. Primitive Prime Divisors for Unicritical Polynomials. [Thesis]. University of Illinois – Chicago; 2013. Available from: http://hdl.handle.net/10027/10357

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

2. Ye, Hexi. Complex Dynamics: Schwarzian Derivatives and Measures of Maximal Entropy.

Degree: 2013, University of Illinois – Chicago

 We investigate the Schwarzian derivatives of a polynomial and its iterates, where the polyno- mial is defined over the field of complex numbers. The escape-rate… (more)

Subjects/Keywords: Schwarzian derivatives; Measures of maximal entropy

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ye, H. (2013). Complex Dynamics: Schwarzian Derivatives and Measures of Maximal Entropy. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/10168

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ye, Hexi. “Complex Dynamics: Schwarzian Derivatives and Measures of Maximal Entropy.” 2013. Thesis, University of Illinois – Chicago. Accessed July 03, 2020. http://hdl.handle.net/10027/10168.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ye, Hexi. “Complex Dynamics: Schwarzian Derivatives and Measures of Maximal Entropy.” 2013. Web. 03 Jul 2020.

Vancouver:

Ye H. Complex Dynamics: Schwarzian Derivatives and Measures of Maximal Entropy. [Internet] [Thesis]. University of Illinois – Chicago; 2013. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/10027/10168.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ye H. Complex Dynamics: Schwarzian Derivatives and Measures of Maximal Entropy. [Thesis]. University of Illinois – Chicago; 2013. Available from: http://hdl.handle.net/10027/10168

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

3. Mullen, Cara. The Critical Orbit Structure of Quadratic Polynomials in Zp.

Degree: 2017, University of Illinois – Chicago

 In this thesis, we develop a non-Archimedean analog to the Hubbard tree, a well-understood object from classical dynamics studied over the complex numbers. To that… (more)

Subjects/Keywords: Arithmetic Dynamics; Number Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mullen, C. (2017). The Critical Orbit Structure of Quadratic Polynomials in Zp. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/21816

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mullen, Cara. “The Critical Orbit Structure of Quadratic Polynomials in Zp.” 2017. Thesis, University of Illinois – Chicago. Accessed July 03, 2020. http://hdl.handle.net/10027/21816.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mullen, Cara. “The Critical Orbit Structure of Quadratic Polynomials in Zp.” 2017. Web. 03 Jul 2020.

Vancouver:

Mullen C. The Critical Orbit Structure of Quadratic Polynomials in Zp. [Internet] [Thesis]. University of Illinois – Chicago; 2017. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/10027/21816.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mullen C. The Critical Orbit Structure of Quadratic Polynomials in Zp. [Thesis]. University of Illinois – Chicago; 2017. Available from: http://hdl.handle.net/10027/21816

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Wang, Liming. Genomic Signal Processing and Regulatory Networks: Representation, Dynamics and Control.

Degree: 2012, University of Illinois – Chicago

 Genomic Signal Processing (GSP) is a discipline to study the processing of genomic signal. GSP studies a large collection of genomic sequence instead of individual… (more)

Subjects/Keywords: Genomic signal processing; Mapping equivalence; Complex dynamics; Regulatory networks; Game theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, L. (2012). Genomic Signal Processing and Regulatory Networks: Representation, Dynamics and Control. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/8850

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wang, Liming. “Genomic Signal Processing and Regulatory Networks: Representation, Dynamics and Control.” 2012. Thesis, University of Illinois – Chicago. Accessed July 03, 2020. http://hdl.handle.net/10027/8850.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wang, Liming. “Genomic Signal Processing and Regulatory Networks: Representation, Dynamics and Control.” 2012. Web. 03 Jul 2020.

Vancouver:

Wang L. Genomic Signal Processing and Regulatory Networks: Representation, Dynamics and Control. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/10027/8850.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wang L. Genomic Signal Processing and Regulatory Networks: Representation, Dynamics and Control. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/8850

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. McGathey, Natalie J. Invariant Measures and Homeomorphisms of Boundaries.

Degree: 2012, University of Illinois – Chicago

 Measure classification is given for actions of the following type: 1. Any unbounded group Γ < G acting on G\H where G = PSL2(R) and… (more)

Subjects/Keywords: dynamics; ergodic theory; measure classification; measure equivalence

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McGathey, N. J. (2012). Invariant Measures and Homeomorphisms of Boundaries. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/8269

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

McGathey, Natalie J. “Invariant Measures and Homeomorphisms of Boundaries.” 2012. Thesis, University of Illinois – Chicago. Accessed July 03, 2020. http://hdl.handle.net/10027/8269.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

McGathey, Natalie J. “Invariant Measures and Homeomorphisms of Boundaries.” 2012. Web. 03 Jul 2020.

Vancouver:

McGathey NJ. Invariant Measures and Homeomorphisms of Boundaries. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/10027/8269.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

McGathey NJ. Invariant Measures and Homeomorphisms of Boundaries. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/8269

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Reschke, Paul. Cohomological Insights for Complex Surface Automorphisms with Positive Entropy.

Degree: 2013, University of Illinois – Chicago

 I equate dynamical properties (e.g., positive entropy, existence of a periodic curve) of complex surface automorphisms with properties of the pull-back actions of such automorphisms… (more)

Subjects/Keywords: Complex Dynamics; Entropy; Kahler Surfaces; Cohomological Actions; Complex Tori

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Reschke, P. (2013). Cohomological Insights for Complex Surface Automorphisms with Positive Entropy. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/10162

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Reschke, Paul. “Cohomological Insights for Complex Surface Automorphisms with Positive Entropy.” 2013. Thesis, University of Illinois – Chicago. Accessed July 03, 2020. http://hdl.handle.net/10027/10162.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Reschke, Paul. “Cohomological Insights for Complex Surface Automorphisms with Positive Entropy.” 2013. Web. 03 Jul 2020.

Vancouver:

Reschke P. Cohomological Insights for Complex Surface Automorphisms with Positive Entropy. [Internet] [Thesis]. University of Illinois – Chicago; 2013. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/10027/10162.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Reschke P. Cohomological Insights for Complex Surface Automorphisms with Positive Entropy. [Thesis]. University of Illinois – Chicago; 2013. Available from: http://hdl.handle.net/10027/10162

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.