Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"University of Colorado" +contributor:("Moriba K. Jah"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Colorado

1. Rosengren, Aaron Jay. Long-term Dynamical Behavior of Highly Perturbed Natural and Artificial Celestial Bodies.

Degree: PhD, Aerospace Engineering Sciences, 2014, University of Colorado

This thesis explores the dynamical evolution of celestial bodies, both natural and artificial, which are strongly perturbed by solar radiation pressure—a non-gravitational force that has played an increasingly important role in celestial mechanics since the early 1900s. The particular focus is on the high area-to-mass ratio (HAMR) space debris discovered in near geosynchronous Earth orbit (GEO) through optical observations in 2004, and on micron-sized circumplanetary dust particles in the outer Saturnian system. The formalism developed can also be applied to—and, indeed, was unquestionably influenced by—the orbital motion of spacecraft about small bodies (asteroids and comets). The chief difficulties which arise in getting an accurate understanding of the motion of such bodies in highly perturbed dynamical environments come, in part, from the nonlinearity of the dynamical system, but more so from the inadequacy of the classical approaches and methods. While modern formulations based on numerical integrations can give “precise” solutions for specific initial conditions, these afford little insight into the nature of the problem or the essential dependence of the perturbed motion on the system parameters. The predominant perturbations acting on HAMR objects and circumplanetary dust grains are solar radiation pressure, planetary oblateness, and third-body gravitational interactions induced by the Sun and nearby natural satellites. We developed first-order averaged models, based on the Milankovitch formulation of perturbation theory, which govern the long-term evolution of orbits subject to these perturbing forces. The unexpectedly rich results obtained by the use of this vector formalism are due to certain important circumstances in celestial and quantum mechanics which gave rise to its origin and development. An attempt has been made to trace these historical developments and to put them into the perspective of the present. The averaged equations of motion hold rigorously for all Keplerian orbits with nonzero angular momentum; they are free of the mathematical singularities associated with circular or equatorial orbits. These approximate equations are written in a concise analytical vector form, which allow our results and demonstrations to attain such extraordinary simplicity and clarity. As a first attempt to understand the disturbed motion, we consider separately the first-order effects of each principal perturbation in altering the orbital elements. We establish that each of these problems is integrable (under certain well-justified assumptions), and that they admit either an exact analytical solution or a complete qualitative description. We then explore the complex interplay between gravitational and non-gravitational perturbations, and examine stable “frozen” orbit configurations and resonances which can occur when these forces act in concert. These results are applied to the study of the dynamics and stability of GEO orbits and to the identification of robust, long-term disposal orbits… Advisors/Committee Members: Daniel J. Scheeres, Philip J. Armitage, Moriba K. Jah, Jay W. McMahon, Hanspeter Schaub.

Subjects/Keywords: Astrodynamics; Celestial Mechanics; Classical Mechanics; Planetary Science; Space Debris; Space Situational Awareness; Astrophysics and Astronomy; Physical Processes; The Sun and the Solar System

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rosengren, A. J. (2014). Long-term Dynamical Behavior of Highly Perturbed Natural and Artificial Celestial Bodies. (Doctoral Dissertation). University of Colorado. Retrieved from http://scholar.colorado.edu/asen_gradetds/79

Chicago Manual of Style (16th Edition):

Rosengren, Aaron Jay. “Long-term Dynamical Behavior of Highly Perturbed Natural and Artificial Celestial Bodies.” 2014. Doctoral Dissertation, University of Colorado. Accessed December 05, 2019. http://scholar.colorado.edu/asen_gradetds/79.

MLA Handbook (7th Edition):

Rosengren, Aaron Jay. “Long-term Dynamical Behavior of Highly Perturbed Natural and Artificial Celestial Bodies.” 2014. Web. 05 Dec 2019.

Vancouver:

Rosengren AJ. Long-term Dynamical Behavior of Highly Perturbed Natural and Artificial Celestial Bodies. [Internet] [Doctoral dissertation]. University of Colorado; 2014. [cited 2019 Dec 05]. Available from: http://scholar.colorado.edu/asen_gradetds/79.

Council of Science Editors:

Rosengren AJ. Long-term Dynamical Behavior of Highly Perturbed Natural and Artificial Celestial Bodies. [Doctoral Dissertation]. University of Colorado; 2014. Available from: http://scholar.colorado.edu/asen_gradetds/79

.