Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"University of Colorado" +contributor:("Min Choi"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Colorado

1. Jeong, Jaeheon. A Divide-and-Conquer Approach for Visual Odometry with Minimally-Overlapped Multi-Camera Setup.

Degree: PhD, Computer Science, 2014, University of Colorado

Pose estimation of a moving camera rig from the images alone has been investigated by the computer vision community for decades, because the location and direction information of the cameras are the basis for more advanced applications, such as 3D reconstruction and Simultaneous Localization and Mapping (SLAM). Visual Odometry (VO) is the accumulation of the relative pose estimation while the camera rig moves. There are some visual odometry methods for mono view, stereo, omnidirectional and multi-cameras that require additional sensor input(odometry, compass, e.g,) and/or synchronized cameras. However, in our Virtual Exercise Environment (VEE) system, and other low-cost multi-camera setups, none of the above methods can be applied. The Bundle Adjustment(BA) is the general approach for a non-regular case like the VEE system. BA puts all the known variables in one huge matrix and solves the unknowns at once with Levenberg-Marquardt iterations. Thus, the BA is computationally expensive in nature with the complexity of O(<em>n3</em>), and sometimes infeasible. In this thesis, I propose a `divide and conquer' approach that generates additional observations from consecutive images in neighboring camera pairs. I show this approach to solve the critical condition and drastically speed up pose estimation when compared to BA. The performance with different conditions and sub-algorithms are also tested and discussed. Advisors/Committee Members: Nikolaus Correll, Clayton Lewis, James Martin, Tom Yeh, Min Choi.

Subjects/Keywords: camera setup; 3D reconstruction; mono view; stereo view; multi-camera; bundle adjustment; Numerical Analysis and Scientific Computing; Theory and Algorithms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jeong, J. (2014). A Divide-and-Conquer Approach for Visual Odometry with Minimally-Overlapped Multi-Camera Setup. (Doctoral Dissertation). University of Colorado. Retrieved from http://scholar.colorado.edu/csci_gradetds/88

Chicago Manual of Style (16th Edition):

Jeong, Jaeheon. “A Divide-and-Conquer Approach for Visual Odometry with Minimally-Overlapped Multi-Camera Setup.” 2014. Doctoral Dissertation, University of Colorado. Accessed November 18, 2019. http://scholar.colorado.edu/csci_gradetds/88.

MLA Handbook (7th Edition):

Jeong, Jaeheon. “A Divide-and-Conquer Approach for Visual Odometry with Minimally-Overlapped Multi-Camera Setup.” 2014. Web. 18 Nov 2019.

Vancouver:

Jeong J. A Divide-and-Conquer Approach for Visual Odometry with Minimally-Overlapped Multi-Camera Setup. [Internet] [Doctoral dissertation]. University of Colorado; 2014. [cited 2019 Nov 18]. Available from: http://scholar.colorado.edu/csci_gradetds/88.

Council of Science Editors:

Jeong J. A Divide-and-Conquer Approach for Visual Odometry with Minimally-Overlapped Multi-Camera Setup. [Doctoral Dissertation]. University of Colorado; 2014. Available from: http://scholar.colorado.edu/csci_gradetds/88

.