Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"University of Arizona" +contributor:("Ercolani, Nicholas M"). Showing records 1 – 15 of 15 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Arizona

1. Waters, Patrick Thomas. Combinatorics Of The Hermitian One-Matrix Model .

Degree: 2015, University of Arizona

 It is well known that the perturbed GUE matrix model has a combinatorial interpretation involving graphs embedded in Riemann surfaces. Generating functions for these graphs… (more)

Subjects/Keywords: map; matrix; random; Mathematics; combinatorics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Waters, P. T. (2015). Combinatorics Of The Hermitian One-Matrix Model . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/556704

Chicago Manual of Style (16th Edition):

Waters, Patrick Thomas. “Combinatorics Of The Hermitian One-Matrix Model .” 2015. Doctoral Dissertation, University of Arizona. Accessed May 08, 2021. http://hdl.handle.net/10150/556704.

MLA Handbook (7th Edition):

Waters, Patrick Thomas. “Combinatorics Of The Hermitian One-Matrix Model .” 2015. Web. 08 May 2021.

Vancouver:

Waters PT. Combinatorics Of The Hermitian One-Matrix Model . [Internet] [Doctoral dissertation]. University of Arizona; 2015. [cited 2021 May 08]. Available from: http://hdl.handle.net/10150/556704.

Council of Science Editors:

Waters PT. Combinatorics Of The Hermitian One-Matrix Model . [Doctoral Dissertation]. University of Arizona; 2015. Available from: http://hdl.handle.net/10150/556704


University of Arizona

2. Brown, Tova. Asymptotics and Dynamics of Map Enumeration Problems .

Degree: 2016, University of Arizona

 We solve certain three-term recurrence relations for generating functions of map enumeration problems. These are combinatorial maps, an embedding of a graph into a surface… (more)

Subjects/Keywords: Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brown, T. (2016). Asymptotics and Dynamics of Map Enumeration Problems . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/621078

Chicago Manual of Style (16th Edition):

Brown, Tova. “Asymptotics and Dynamics of Map Enumeration Problems .” 2016. Doctoral Dissertation, University of Arizona. Accessed May 08, 2021. http://hdl.handle.net/10150/621078.

MLA Handbook (7th Edition):

Brown, Tova. “Asymptotics and Dynamics of Map Enumeration Problems .” 2016. Web. 08 May 2021.

Vancouver:

Brown T. Asymptotics and Dynamics of Map Enumeration Problems . [Internet] [Doctoral dissertation]. University of Arizona; 2016. [cited 2021 May 08]. Available from: http://hdl.handle.net/10150/621078.

Council of Science Editors:

Brown T. Asymptotics and Dynamics of Map Enumeration Problems . [Doctoral Dissertation]. University of Arizona; 2016. Available from: http://hdl.handle.net/10150/621078


University of Arizona

3. Stone, Megan Elizabeth. Eigenvalue Densities for the Hermitian Two-Matrix Model and Connections to Hurwitz Numbers .

Degree: 2017, University of Arizona

 This dissertation investigates the limiting distribution of eigenvalues of pairs of matrices (M1,M2) belonging to the Hermitian two-matrix model. This model is an example of… (more)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stone, M. E. (2017). Eigenvalue Densities for the Hermitian Two-Matrix Model and Connections to Hurwitz Numbers . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/626370

Chicago Manual of Style (16th Edition):

Stone, Megan Elizabeth. “Eigenvalue Densities for the Hermitian Two-Matrix Model and Connections to Hurwitz Numbers .” 2017. Doctoral Dissertation, University of Arizona. Accessed May 08, 2021. http://hdl.handle.net/10150/626370.

MLA Handbook (7th Edition):

Stone, Megan Elizabeth. “Eigenvalue Densities for the Hermitian Two-Matrix Model and Connections to Hurwitz Numbers .” 2017. Web. 08 May 2021.

Vancouver:

Stone ME. Eigenvalue Densities for the Hermitian Two-Matrix Model and Connections to Hurwitz Numbers . [Internet] [Doctoral dissertation]. University of Arizona; 2017. [cited 2021 May 08]. Available from: http://hdl.handle.net/10150/626370.

Council of Science Editors:

Stone ME. Eigenvalue Densities for the Hermitian Two-Matrix Model and Connections to Hurwitz Numbers . [Doctoral Dissertation]. University of Arizona; 2017. Available from: http://hdl.handle.net/10150/626370


University of Arizona

4. Murphy, Dylan. Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations .

Degree: 2019, University of Arizona

 We develop a class of Darboux transformations called additions for Jacobi operators. We show that by conjugating by a reflection, an addition may be inverted… (more)

Subjects/Keywords: Darboux transformation; Integrable systems; Toda lattice

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Murphy, D. (2019). Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/636509

Chicago Manual of Style (16th Edition):

Murphy, Dylan. “Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations .” 2019. Doctoral Dissertation, University of Arizona. Accessed May 08, 2021. http://hdl.handle.net/10150/636509.

MLA Handbook (7th Edition):

Murphy, Dylan. “Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations .” 2019. Web. 08 May 2021.

Vancouver:

Murphy D. Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations . [Internet] [Doctoral dissertation]. University of Arizona; 2019. [cited 2021 May 08]. Available from: http://hdl.handle.net/10150/636509.

Council of Science Editors:

Murphy D. Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations . [Doctoral Dissertation]. University of Arizona; 2019. Available from: http://hdl.handle.net/10150/636509


University of Arizona

5. Ramalheira-Tsu, Jonathan. The Kostant-Toda Lattice, Combinatorial Algorithms and Ultradiscrete Dynamics .

Degree: 2020, University of Arizona

 We study the relationship between the algorithm underlying the Robinson-Schensted-Knuth correspondence (Schensted insertion) and the Toda lattice, exploring this in the settings of discrete-time, ultradiscrete,… (more)

Subjects/Keywords: Box-Ball System; Combinatorics; Dynamical Systems; Integrable Systems; Robinson-Schensted-Knuth Correspondence; The Toda Lattice

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ramalheira-Tsu, J. (2020). The Kostant-Toda Lattice, Combinatorial Algorithms and Ultradiscrete Dynamics . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/648656

Chicago Manual of Style (16th Edition):

Ramalheira-Tsu, Jonathan. “The Kostant-Toda Lattice, Combinatorial Algorithms and Ultradiscrete Dynamics .” 2020. Doctoral Dissertation, University of Arizona. Accessed May 08, 2021. http://hdl.handle.net/10150/648656.

MLA Handbook (7th Edition):

Ramalheira-Tsu, Jonathan. “The Kostant-Toda Lattice, Combinatorial Algorithms and Ultradiscrete Dynamics .” 2020. Web. 08 May 2021.

Vancouver:

Ramalheira-Tsu J. The Kostant-Toda Lattice, Combinatorial Algorithms and Ultradiscrete Dynamics . [Internet] [Doctoral dissertation]. University of Arizona; 2020. [cited 2021 May 08]. Available from: http://hdl.handle.net/10150/648656.

Council of Science Editors:

Ramalheira-Tsu J. The Kostant-Toda Lattice, Combinatorial Algorithms and Ultradiscrete Dynamics . [Doctoral Dissertation]. University of Arizona; 2020. Available from: http://hdl.handle.net/10150/648656


University of Arizona

6. Pierce, Virgil. The asymptotic expansion of the partition function of random matrices .

Degree: 2004, University of Arizona

 We explore two methods for calculating the Taylor Coefficients of the terms of the asymptotic expansion of the partition function of random matrices for specific… (more)

Subjects/Keywords: Mathematics.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pierce, V. (2004). The asymptotic expansion of the partition function of random matrices . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/280566

Chicago Manual of Style (16th Edition):

Pierce, Virgil. “The asymptotic expansion of the partition function of random matrices .” 2004. Doctoral Dissertation, University of Arizona. Accessed May 08, 2021. http://hdl.handle.net/10150/280566.

MLA Handbook (7th Edition):

Pierce, Virgil. “The asymptotic expansion of the partition function of random matrices .” 2004. Web. 08 May 2021.

Vancouver:

Pierce V. The asymptotic expansion of the partition function of random matrices . [Internet] [Doctoral dissertation]. University of Arizona; 2004. [cited 2021 May 08]. Available from: http://hdl.handle.net/10150/280566.

Council of Science Editors:

Pierce V. The asymptotic expansion of the partition function of random matrices . [Doctoral Dissertation]. University of Arizona; 2004. Available from: http://hdl.handle.net/10150/280566

7. Nabelek, Patrik Vaclav. Applications of Complex Variables to Spectral Theory and Completely Integrable Partial Differential Equations .

Degree: 2018, University of Arizona

 We generalize the 1+1 Kaup – Broer system to an integrable 2+1 dimensional system via the dressing method. This allows us to compute N – soliton solutions… (more)

Subjects/Keywords: Integrable Systems; Kaup – Broer System; KdV Equation; Periodic Potentials; Solitons

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nabelek, P. V. (2018). Applications of Complex Variables to Spectral Theory and Completely Integrable Partial Differential Equations . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/627724

Chicago Manual of Style (16th Edition):

Nabelek, Patrik Vaclav. “Applications of Complex Variables to Spectral Theory and Completely Integrable Partial Differential Equations .” 2018. Doctoral Dissertation, University of Arizona. Accessed May 08, 2021. http://hdl.handle.net/10150/627724.

MLA Handbook (7th Edition):

Nabelek, Patrik Vaclav. “Applications of Complex Variables to Spectral Theory and Completely Integrable Partial Differential Equations .” 2018. Web. 08 May 2021.

Vancouver:

Nabelek PV. Applications of Complex Variables to Spectral Theory and Completely Integrable Partial Differential Equations . [Internet] [Doctoral dissertation]. University of Arizona; 2018. [cited 2021 May 08]. Available from: http://hdl.handle.net/10150/627724.

Council of Science Editors:

Nabelek PV. Applications of Complex Variables to Spectral Theory and Completely Integrable Partial Differential Equations . [Doctoral Dissertation]. University of Arizona; 2018. Available from: http://hdl.handle.net/10150/627724

8. Acosta Jaramillo, Enrique. Leading Order Asymptotics of a Multi-Matrix Partition Function for Colored Triangulations .

Degree: 2013, University of Arizona

 We study the leading order asymptotics of a Random Matrix theory partition function related to colored triangulations. This partition function comes from a three Hermitian… (more)

Subjects/Keywords: Enumeration; Maps; Triangulations; Mathematics; Asymptotics

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Acosta Jaramillo, E. (2013). Leading Order Asymptotics of a Multi-Matrix Partition Function for Colored Triangulations . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/293410

Chicago Manual of Style (16th Edition):

Acosta Jaramillo, Enrique. “Leading Order Asymptotics of a Multi-Matrix Partition Function for Colored Triangulations .” 2013. Doctoral Dissertation, University of Arizona. Accessed May 08, 2021. http://hdl.handle.net/10150/293410.

MLA Handbook (7th Edition):

Acosta Jaramillo, Enrique. “Leading Order Asymptotics of a Multi-Matrix Partition Function for Colored Triangulations .” 2013. Web. 08 May 2021.

Vancouver:

Acosta Jaramillo E. Leading Order Asymptotics of a Multi-Matrix Partition Function for Colored Triangulations . [Internet] [Doctoral dissertation]. University of Arizona; 2013. [cited 2021 May 08]. Available from: http://hdl.handle.net/10150/293410.

Council of Science Editors:

Acosta Jaramillo E. Leading Order Asymptotics of a Multi-Matrix Partition Function for Colored Triangulations . [Doctoral Dissertation]. University of Arizona; 2013. Available from: http://hdl.handle.net/10150/293410


University of Arizona

9. Cruz-Pacheco, Gustavo. The nonlinear Schroedinger limit of the complex Ginzburg-Landau equation.

Degree: 1995, University of Arizona

 This work consists of a study of the complex Ginzburg-Landau equation (CGL) as a perturbation of the nonlinear Schrodinger equation (NLS) in one dimension under… (more)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cruz-Pacheco, G. (1995). The nonlinear Schroedinger limit of the complex Ginzburg-Landau equation. (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/187238

Chicago Manual of Style (16th Edition):

Cruz-Pacheco, Gustavo. “The nonlinear Schroedinger limit of the complex Ginzburg-Landau equation. ” 1995. Doctoral Dissertation, University of Arizona. Accessed May 08, 2021. http://hdl.handle.net/10150/187238.

MLA Handbook (7th Edition):

Cruz-Pacheco, Gustavo. “The nonlinear Schroedinger limit of the complex Ginzburg-Landau equation. ” 1995. Web. 08 May 2021.

Vancouver:

Cruz-Pacheco G. The nonlinear Schroedinger limit of the complex Ginzburg-Landau equation. [Internet] [Doctoral dissertation]. University of Arizona; 1995. [cited 2021 May 08]. Available from: http://hdl.handle.net/10150/187238.

Council of Science Editors:

Cruz-Pacheco G. The nonlinear Schroedinger limit of the complex Ginzburg-Landau equation. [Doctoral Dissertation]. University of Arizona; 1995. Available from: http://hdl.handle.net/10150/187238


University of Arizona

10. Holmberg, Gregory Peter. A lower bound for the Laplacian.

Degree: 1995, University of Arizona

 In my dissertation I study the Dirichlet Laplacian in an unbounded Euclidean domain of dimension n, Rⁿ, and in an unbounded domain in a hyperbolic… (more)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Holmberg, G. P. (1995). A lower bound for the Laplacian. (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/187252

Chicago Manual of Style (16th Edition):

Holmberg, Gregory Peter. “A lower bound for the Laplacian. ” 1995. Doctoral Dissertation, University of Arizona. Accessed May 08, 2021. http://hdl.handle.net/10150/187252.

MLA Handbook (7th Edition):

Holmberg, Gregory Peter. “A lower bound for the Laplacian. ” 1995. Web. 08 May 2021.

Vancouver:

Holmberg GP. A lower bound for the Laplacian. [Internet] [Doctoral dissertation]. University of Arizona; 1995. [cited 2021 May 08]. Available from: http://hdl.handle.net/10150/187252.

Council of Science Editors:

Holmberg GP. A lower bound for the Laplacian. [Doctoral Dissertation]. University of Arizona; 1995. Available from: http://hdl.handle.net/10150/187252


University of Arizona

11. Lu, Yixia. Painleve Analysis, Lie Symmetries and Integrability of Nonlinear Ordinary Differential Equations .

Degree: 2005, University of Arizona

 The Painleve analysis plays an important role in investigating local structure of the solutions of differential equations, while Lie symmetries provide powerful tools in global… (more)

Subjects/Keywords: Painleve analysis; Lie symmetries; Integrability; ODE

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lu, Y. (2005). Painleve Analysis, Lie Symmetries and Integrability of Nonlinear Ordinary Differential Equations . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/193894

Chicago Manual of Style (16th Edition):

Lu, Yixia. “Painleve Analysis, Lie Symmetries and Integrability of Nonlinear Ordinary Differential Equations .” 2005. Doctoral Dissertation, University of Arizona. Accessed May 08, 2021. http://hdl.handle.net/10150/193894.

MLA Handbook (7th Edition):

Lu, Yixia. “Painleve Analysis, Lie Symmetries and Integrability of Nonlinear Ordinary Differential Equations .” 2005. Web. 08 May 2021.

Vancouver:

Lu Y. Painleve Analysis, Lie Symmetries and Integrability of Nonlinear Ordinary Differential Equations . [Internet] [Doctoral dissertation]. University of Arizona; 2005. [cited 2021 May 08]. Available from: http://hdl.handle.net/10150/193894.

Council of Science Editors:

Lu Y. Painleve Analysis, Lie Symmetries and Integrability of Nonlinear Ordinary Differential Equations . [Doctoral Dissertation]. University of Arizona; 2005. Available from: http://hdl.handle.net/10150/193894


University of Arizona

12. Solis, Francisco Javier. Geometric aspects of local adaptive Galerkin bases.

Degree: 1993, University of Arizona

 The local adaptive Galerkin bases for large dynamical systems, whose long time behaviour is confined to a finite dimensional manifold, are bases chosen by a… (more)

Subjects/Keywords: Dissertations, Academic.; Mathematics.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Solis, F. J. (1993). Geometric aspects of local adaptive Galerkin bases. (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/186592

Chicago Manual of Style (16th Edition):

Solis, Francisco Javier. “Geometric aspects of local adaptive Galerkin bases. ” 1993. Doctoral Dissertation, University of Arizona. Accessed May 08, 2021. http://hdl.handle.net/10150/186592.

MLA Handbook (7th Edition):

Solis, Francisco Javier. “Geometric aspects of local adaptive Galerkin bases. ” 1993. Web. 08 May 2021.

Vancouver:

Solis FJ. Geometric aspects of local adaptive Galerkin bases. [Internet] [Doctoral dissertation]. University of Arizona; 1993. [cited 2021 May 08]. Available from: http://hdl.handle.net/10150/186592.

Council of Science Editors:

Solis FJ. Geometric aspects of local adaptive Galerkin bases. [Doctoral Dissertation]. University of Arizona; 1993. Available from: http://hdl.handle.net/10150/186592


University of Arizona

13. Brilleslyper, Michael Alan. The Dirichlet problem for harmonic maps from the disk into a sphere.

Degree: 1994, University of Arizona

 The Dirichlet problem for harmonic maps from the disk into the 2-sphere is a natural, non-linear, generalization of the classical Dirichlet problem. In this context,… (more)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brilleslyper, M. A. (1994). The Dirichlet problem for harmonic maps from the disk into a sphere. (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/186981

Chicago Manual of Style (16th Edition):

Brilleslyper, Michael Alan. “The Dirichlet problem for harmonic maps from the disk into a sphere. ” 1994. Doctoral Dissertation, University of Arizona. Accessed May 08, 2021. http://hdl.handle.net/10150/186981.

MLA Handbook (7th Edition):

Brilleslyper, Michael Alan. “The Dirichlet problem for harmonic maps from the disk into a sphere. ” 1994. Web. 08 May 2021.

Vancouver:

Brilleslyper MA. The Dirichlet problem for harmonic maps from the disk into a sphere. [Internet] [Doctoral dissertation]. University of Arizona; 1994. [cited 2021 May 08]. Available from: http://hdl.handle.net/10150/186981.

Council of Science Editors:

Brilleslyper MA. The Dirichlet problem for harmonic maps from the disk into a sphere. [Doctoral Dissertation]. University of Arizona; 1994. Available from: http://hdl.handle.net/10150/186981


University of Arizona

14. Roitner, Heinz Helmut. Applications of the inverse spectral transform to a Korteweg-de Vries equation with a Kuramoto-Sivashinsky-type perturbation.

Degree: 1991, University of Arizona

 In this dissertation, the initial-boundary value problem u(t) - uuₓ + δ²uₓₓₓ + uₓₓ + β²uₓₓₓₓ = 0. u(x + 1) = u(x); u(x,0) =… (more)

Subjects/Keywords: Dissertations, Academic; Mathematics.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Roitner, H. H. (1991). Applications of the inverse spectral transform to a Korteweg-de Vries equation with a Kuramoto-Sivashinsky-type perturbation. (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/185572

Chicago Manual of Style (16th Edition):

Roitner, Heinz Helmut. “Applications of the inverse spectral transform to a Korteweg-de Vries equation with a Kuramoto-Sivashinsky-type perturbation. ” 1991. Doctoral Dissertation, University of Arizona. Accessed May 08, 2021. http://hdl.handle.net/10150/185572.

MLA Handbook (7th Edition):

Roitner, Heinz Helmut. “Applications of the inverse spectral transform to a Korteweg-de Vries equation with a Kuramoto-Sivashinsky-type perturbation. ” 1991. Web. 08 May 2021.

Vancouver:

Roitner HH. Applications of the inverse spectral transform to a Korteweg-de Vries equation with a Kuramoto-Sivashinsky-type perturbation. [Internet] [Doctoral dissertation]. University of Arizona; 1991. [cited 2021 May 08]. Available from: http://hdl.handle.net/10150/185572.

Council of Science Editors:

Roitner HH. Applications of the inverse spectral transform to a Korteweg-de Vries equation with a Kuramoto-Sivashinsky-type perturbation. [Doctoral Dissertation]. University of Arizona; 1991. Available from: http://hdl.handle.net/10150/185572


University of Arizona

15. Lo, Assane. Witten Laplacian Methods For Critical Phenomena .

Degree: 2007, University of Arizona

 It is well known that very few models of interacting systems particularly those in dimension higher than two, can be solved exactly. The mean-field treatment… (more)

Subjects/Keywords: Witten Laplacians; Correlations; Analyticity; Pressure

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lo, A. (2007). Witten Laplacian Methods For Critical Phenomena . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/193872

Chicago Manual of Style (16th Edition):

Lo, Assane. “Witten Laplacian Methods For Critical Phenomena .” 2007. Doctoral Dissertation, University of Arizona. Accessed May 08, 2021. http://hdl.handle.net/10150/193872.

MLA Handbook (7th Edition):

Lo, Assane. “Witten Laplacian Methods For Critical Phenomena .” 2007. Web. 08 May 2021.

Vancouver:

Lo A. Witten Laplacian Methods For Critical Phenomena . [Internet] [Doctoral dissertation]. University of Arizona; 2007. [cited 2021 May 08]. Available from: http://hdl.handle.net/10150/193872.

Council of Science Editors:

Lo A. Witten Laplacian Methods For Critical Phenomena . [Doctoral Dissertation]. University of Arizona; 2007. Available from: http://hdl.handle.net/10150/193872

.