Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"Universiteit Utrecht" +contributor:("Engbersen, J.F.J."). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Universiteit Utrecht

1. Vader, P. Delivery systems for siRNA: Towards targeted inhibition of tumor angiogenesis.

Degree: 2012, Universiteit Utrecht

Since 40 years, angiogenesis has been recognized to be a prominent factor in the development of solid tumors and has been regarded as an attractive target for cancer therapy. A promising strategy to interfere with diseases where (over)expression of specific genes contributes to the pathological process, such as angiogenesis, is gene silencing by RNA interference (RNAi). So far, clinical success of RNAi-based strategies to inhibit tumor angiogenesis have been limited due to (1) scarcity of clinically promising pharmacological targets and/or (2) inefficiency or toxicity of the siRNA carrier system. In this thesis, we attempted to improve both siRNA target and carrier. Therefore, we studied a novel small Rho GTPase protein, Rac1, as a potential target for anti-angiogenic therapy. Our results indicate that Rac1 is an important regulator of VEGF-mediated angiogenesis and that knockdown of Rac1 using siRNA may represent an attractive approach to inhibit tumor angiogenesis and growth. At the same time, we tried to adapt and improve a novel class of biodegradable poly(amido amine)s, with built-in characteristics for intracellular release of its siRNA payload, for drug delivery purposes. By titrating the positive charges, these polymers were optimized for siRNA delivery. PEGylation of the polymers resulted in increased stability of siRNA polyplexes in salt and serum and further decreased their toxicity. Additionally, we modified a previously described lipid-based carrier for siRNA to target angiogenic endothelial cells. We show that these systems ensure cellular uptake and gene silencing in both murine and human endothelial cells. Further research should evaluate the use of these carriers for gene silencing in vivo. This thesis provides starting points for future research on the optimization of polymeric and lipidic carrier systems for silencing of genes involved in angiogenesis. This may ultimately lead to the development of safe delivery systems that enable therapeutic RNA interference in cancer therapy. Advisors/Committee Members: Storm, G, Engbersen, J.F.J., Schiffelers, Raymond.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vader, P. (2012). Delivery systems for siRNA: Towards targeted inhibition of tumor angiogenesis. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/219463

Chicago Manual of Style (16th Edition):

Vader, P. “Delivery systems for siRNA: Towards targeted inhibition of tumor angiogenesis.” 2012. Doctoral Dissertation, Universiteit Utrecht. Accessed October 23, 2019. http://dspace.library.uu.nl:8080/handle/1874/219463.

MLA Handbook (7th Edition):

Vader, P. “Delivery systems for siRNA: Towards targeted inhibition of tumor angiogenesis.” 2012. Web. 23 Oct 2019.

Vancouver:

Vader P. Delivery systems for siRNA: Towards targeted inhibition of tumor angiogenesis. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2012. [cited 2019 Oct 23]. Available from: http://dspace.library.uu.nl:8080/handle/1874/219463.

Council of Science Editors:

Vader P. Delivery systems for siRNA: Towards targeted inhibition of tumor angiogenesis. [Doctoral Dissertation]. Universiteit Utrecht; 2012. Available from: http://dspace.library.uu.nl:8080/handle/1874/219463

.