Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"Universiteit Utrecht" +contributor:("Cavalcanti, G.R."). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Klaasse, R.L. Seiberg-Witten theory for symplectic manifolds.

Degree: 2013, Universiteit Utrecht

 In this thesis we give an introduction to Seiberg-Witten gauge theory used to study compact oriented four-dimensional manifolds X. Seiberg-Witten theory uses a Spin c… (more)

Subjects/Keywords: Seiberg-Witten theory; four-manifolds; symplectic manifolds; Spin c structures; Dirac operators

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Klaasse, R. L. (2013). Seiberg-Witten theory for symplectic manifolds. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/282753

Chicago Manual of Style (16th Edition):

Klaasse, R L. “Seiberg-Witten theory for symplectic manifolds.” 2013. Masters Thesis, Universiteit Utrecht. Accessed January 18, 2021. http://dspace.library.uu.nl:8080/handle/1874/282753.

MLA Handbook (7th Edition):

Klaasse, R L. “Seiberg-Witten theory for symplectic manifolds.” 2013. Web. 18 Jan 2021.

Vancouver:

Klaasse RL. Seiberg-Witten theory for symplectic manifolds. [Internet] [Masters thesis]. Universiteit Utrecht; 2013. [cited 2021 Jan 18]. Available from: http://dspace.library.uu.nl:8080/handle/1874/282753.

Council of Science Editors:

Klaasse RL. Seiberg-Witten theory for symplectic manifolds. [Masters Thesis]. Universiteit Utrecht; 2013. Available from: http://dspace.library.uu.nl:8080/handle/1874/282753


Universiteit Utrecht

2. Tel, A.W. Lefschetz fibrations and symplectic structures.

Degree: 2015, Universiteit Utrecht

 In this thesis, we study a relation between symplectic structures and Lefschetz ?brations to shed some light on 4-manifold theory. We introduce symplectic manifolds and… (more)

Subjects/Keywords: Lefschetz fibration; Lefschetz pencil; symplectic geometry; fiber bundle; complex geometry; compatibility

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tel, A. W. (2015). Lefschetz fibrations and symplectic structures. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/311281

Chicago Manual of Style (16th Edition):

Tel, A W. “Lefschetz fibrations and symplectic structures.” 2015. Masters Thesis, Universiteit Utrecht. Accessed January 18, 2021. http://dspace.library.uu.nl:8080/handle/1874/311281.

MLA Handbook (7th Edition):

Tel, A W. “Lefschetz fibrations and symplectic structures.” 2015. Web. 18 Jan 2021.

Vancouver:

Tel AW. Lefschetz fibrations and symplectic structures. [Internet] [Masters thesis]. Universiteit Utrecht; 2015. [cited 2021 Jan 18]. Available from: http://dspace.library.uu.nl:8080/handle/1874/311281.

Council of Science Editors:

Tel AW. Lefschetz fibrations and symplectic structures. [Masters Thesis]. Universiteit Utrecht; 2015. Available from: http://dspace.library.uu.nl:8080/handle/1874/311281


Universiteit Utrecht

3. Wang, K.J.L. Generalized complex geometry and blow-ups.

Degree: 2014, Universiteit Utrecht

 Blowing up is a well-known procedure to resolve singularities and create new spaces with certain kinds of geometric structures. Although the technique of blowing-up is… (more)

Subjects/Keywords: generalized complex geometry; blow-up; differential geometry; Morita equivalence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, K. J. L. (2014). Generalized complex geometry and blow-ups. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/296914

Chicago Manual of Style (16th Edition):

Wang, K J L. “Generalized complex geometry and blow-ups.” 2014. Masters Thesis, Universiteit Utrecht. Accessed January 18, 2021. http://dspace.library.uu.nl:8080/handle/1874/296914.

MLA Handbook (7th Edition):

Wang, K J L. “Generalized complex geometry and blow-ups.” 2014. Web. 18 Jan 2021.

Vancouver:

Wang KJL. Generalized complex geometry and blow-ups. [Internet] [Masters thesis]. Universiteit Utrecht; 2014. [cited 2021 Jan 18]. Available from: http://dspace.library.uu.nl:8080/handle/1874/296914.

Council of Science Editors:

Wang KJL. Generalized complex geometry and blow-ups. [Masters Thesis]. Universiteit Utrecht; 2014. Available from: http://dspace.library.uu.nl:8080/handle/1874/296914

4. Bet, B.P. Electromagnetic duality, del Pezzo surfaces and Instantons.

Degree: 2013, Universiteit Utrecht

 Electromagnetism can be described as an Abelian gauge theory. A mathematical overview of gauge theory and the concept of instantons is given. Electromagnetic duality is… (more)

Subjects/Keywords: gauge theory; instantons; Dirac quantization; electromagnetic duality; del Pezzo surfaces; instanton moduli space; Donaldson invariants

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bet, B. P. (2013). Electromagnetic duality, del Pezzo surfaces and Instantons. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/282329

Chicago Manual of Style (16th Edition):

Bet, B P. “Electromagnetic duality, del Pezzo surfaces and Instantons.” 2013. Masters Thesis, Universiteit Utrecht. Accessed January 18, 2021. http://dspace.library.uu.nl:8080/handle/1874/282329.

MLA Handbook (7th Edition):

Bet, B P. “Electromagnetic duality, del Pezzo surfaces and Instantons.” 2013. Web. 18 Jan 2021.

Vancouver:

Bet BP. Electromagnetic duality, del Pezzo surfaces and Instantons. [Internet] [Masters thesis]. Universiteit Utrecht; 2013. [cited 2021 Jan 18]. Available from: http://dspace.library.uu.nl:8080/handle/1874/282329.

Council of Science Editors:

Bet BP. Electromagnetic duality, del Pezzo surfaces and Instantons. [Masters Thesis]. Universiteit Utrecht; 2013. Available from: http://dspace.library.uu.nl:8080/handle/1874/282329

5. Lam, H. het. Singularities in Spacetimes with Torsion.

Degree: 2016, Universiteit Utrecht

 We study the singularity theorems of Hawking and Penrose in spacetimes with non-vanishing torsion (Einstein-Cartan theory). Assuming that test particles move on geodesics we manage… (more)

Subjects/Keywords: Einstein-Cartan Theory; Torsion; Singularity; Singularity theorems; Conjugate Points; FLRW spacetime

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lam, H. h. (2016). Singularities in Spacetimes with Torsion. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/335282

Chicago Manual of Style (16th Edition):

Lam, H het. “Singularities in Spacetimes with Torsion.” 2016. Masters Thesis, Universiteit Utrecht. Accessed January 18, 2021. http://dspace.library.uu.nl:8080/handle/1874/335282.

MLA Handbook (7th Edition):

Lam, H het. “Singularities in Spacetimes with Torsion.” 2016. Web. 18 Jan 2021.

Vancouver:

Lam Hh. Singularities in Spacetimes with Torsion. [Internet] [Masters thesis]. Universiteit Utrecht; 2016. [cited 2021 Jan 18]. Available from: http://dspace.library.uu.nl:8080/handle/1874/335282.

Council of Science Editors:

Lam Hh. Singularities in Spacetimes with Torsion. [Masters Thesis]. Universiteit Utrecht; 2016. Available from: http://dspace.library.uu.nl:8080/handle/1874/335282

6. Broens, J.P.S. Instantons and Electric-Magnetic Duality on Del Pezzo surfaces.

Degree: 2013, Universiteit Utrecht

 Instantons and electric-magnetic duality are two phenomena that arise in the interplay between gauge theory and four-dimensional geometry. An important class of instantons in four-dimensional… (more)

Subjects/Keywords: Instantons; Yang – Mills theory; Electric-magnetic duality; Maxwell theory; four-manifolds; del Pezzo surfaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Broens, J. P. S. (2013). Instantons and Electric-Magnetic Duality on Del Pezzo surfaces. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/281795

Chicago Manual of Style (16th Edition):

Broens, J P S. “Instantons and Electric-Magnetic Duality on Del Pezzo surfaces.” 2013. Masters Thesis, Universiteit Utrecht. Accessed January 18, 2021. http://dspace.library.uu.nl:8080/handle/1874/281795.

MLA Handbook (7th Edition):

Broens, J P S. “Instantons and Electric-Magnetic Duality on Del Pezzo surfaces.” 2013. Web. 18 Jan 2021.

Vancouver:

Broens JPS. Instantons and Electric-Magnetic Duality on Del Pezzo surfaces. [Internet] [Masters thesis]. Universiteit Utrecht; 2013. [cited 2021 Jan 18]. Available from: http://dspace.library.uu.nl:8080/handle/1874/281795.

Council of Science Editors:

Broens JPS. Instantons and Electric-Magnetic Duality on Del Pezzo surfaces. [Masters Thesis]. Universiteit Utrecht; 2013. Available from: http://dspace.library.uu.nl:8080/handle/1874/281795

.