Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"Université Paris-Est" +contributor:("Thibon, Jean-Yves"). Showing records 1 – 5 of 5 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Pons, Viviane. Combinatoire algébrique liée aux ordres sur les permutations : Algebraic combinatorics on orders of permutations.

Degree: Docteur es, Informatique, 2013, Université Paris-Est

Cette thèse se situe dans le domaine de la combinatoire algébrique et porte sur l'étude et les applications de trois ordres sur les permutations :… (more)

Subjects/Keywords: Combinatoire algébrique; Ordres du groupe symétrique; Différences divisées; Polynômes de Grothendieck; Treillis de Tamari; Algèbre de Hopf; Algebraic combinatorics; Orders of the symmetric group; Divided differences; Grothendieck polynomials; Tamari lattice; Hopf algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pons, V. (2013). Combinatoire algébrique liée aux ordres sur les permutations : Algebraic combinatorics on orders of permutations. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2013PEST1093

Chicago Manual of Style (16th Edition):

Pons, Viviane. “Combinatoire algébrique liée aux ordres sur les permutations : Algebraic combinatorics on orders of permutations.” 2013. Doctoral Dissertation, Université Paris-Est. Accessed July 09, 2020. http://www.theses.fr/2013PEST1093.

MLA Handbook (7th Edition):

Pons, Viviane. “Combinatoire algébrique liée aux ordres sur les permutations : Algebraic combinatorics on orders of permutations.” 2013. Web. 09 Jul 2020.

Vancouver:

Pons V. Combinatoire algébrique liée aux ordres sur les permutations : Algebraic combinatorics on orders of permutations. [Internet] [Doctoral dissertation]. Université Paris-Est; 2013. [cited 2020 Jul 09]. Available from: http://www.theses.fr/2013PEST1093.

Council of Science Editors:

Pons V. Combinatoire algébrique liée aux ordres sur les permutations : Algebraic combinatorics on orders of permutations. [Doctoral Dissertation]. Université Paris-Est; 2013. Available from: http://www.theses.fr/2013PEST1093

2. Bultel, Jean-Paul. Déformations d'algèbres de Hopf combinatoires et inversion de Lagrange non commutative : Deformations of combinatorial Hopf algebras and noncommutative Lagrange inversion.

Degree: Docteur es, Informatique, 2011, Université Paris-Est

Cette thèse est consacrée à l’étude de familles à un paramètre de coproduits sur lesfonctions symétriques et leurs analogues non commutatifs. On montre en introduisant… (more)

Subjects/Keywords: Algébres de Hopf combinatoires; Inversion de Lagrange; Algébre de Faraht-Higman; Combinatorial Hopf algebras; Lagrange inversion; Farahat-Higman algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bultel, J. (2011). Déformations d'algèbres de Hopf combinatoires et inversion de Lagrange non commutative : Deformations of combinatorial Hopf algebras and noncommutative Lagrange inversion. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2011PEST1006

Chicago Manual of Style (16th Edition):

Bultel, Jean-Paul. “Déformations d'algèbres de Hopf combinatoires et inversion de Lagrange non commutative : Deformations of combinatorial Hopf algebras and noncommutative Lagrange inversion.” 2011. Doctoral Dissertation, Université Paris-Est. Accessed July 09, 2020. http://www.theses.fr/2011PEST1006.

MLA Handbook (7th Edition):

Bultel, Jean-Paul. “Déformations d'algèbres de Hopf combinatoires et inversion de Lagrange non commutative : Deformations of combinatorial Hopf algebras and noncommutative Lagrange inversion.” 2011. Web. 09 Jul 2020.

Vancouver:

Bultel J. Déformations d'algèbres de Hopf combinatoires et inversion de Lagrange non commutative : Deformations of combinatorial Hopf algebras and noncommutative Lagrange inversion. [Internet] [Doctoral dissertation]. Université Paris-Est; 2011. [cited 2020 Jul 09]. Available from: http://www.theses.fr/2011PEST1006.

Council of Science Editors:

Bultel J. Déformations d'algèbres de Hopf combinatoires et inversion de Lagrange non commutative : Deformations of combinatorial Hopf algebras and noncommutative Lagrange inversion. [Doctoral Dissertation]. Université Paris-Est; 2011. Available from: http://www.theses.fr/2011PEST1006

3. Maurice, Rémi. Algèbres de Hopf combinatoires : Combinatorial Hopf algebras.

Degree: Docteur es, Informatique, 2013, Université Paris-Est

Cette thèse se situe dans le domaine de la combinatoire algébrique. Autrement dit, l'idée est d'utiliser des structures algébriques, en l'occurence des algèbres de Hopf… (more)

Subjects/Keywords: Algèbre de Hopf combinatoire; Réalisation polynomiale; Matrices tassées; Matrices à signes alternants; Combinatorial Hopf algebra; Polynomial realization; Packed matrices; Alternating sign matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maurice, R. (2013). Algèbres de Hopf combinatoires : Combinatorial Hopf algebras. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2013PEST1196

Chicago Manual of Style (16th Edition):

Maurice, Rémi. “Algèbres de Hopf combinatoires : Combinatorial Hopf algebras.” 2013. Doctoral Dissertation, Université Paris-Est. Accessed July 09, 2020. http://www.theses.fr/2013PEST1196.

MLA Handbook (7th Edition):

Maurice, Rémi. “Algèbres de Hopf combinatoires : Combinatorial Hopf algebras.” 2013. Web. 09 Jul 2020.

Vancouver:

Maurice R. Algèbres de Hopf combinatoires : Combinatorial Hopf algebras. [Internet] [Doctoral dissertation]. Université Paris-Est; 2013. [cited 2020 Jul 09]. Available from: http://www.theses.fr/2013PEST1196.

Council of Science Editors:

Maurice R. Algèbres de Hopf combinatoires : Combinatorial Hopf algebras. [Doctoral Dissertation]. Université Paris-Est; 2013. Available from: http://www.theses.fr/2013PEST1196

4. Randazzo, Lucas. Combinatoire bijective autour d'arbres et de chemins : Bijective combinatorics on trees and walks.

Degree: Docteur es, Informatique, 2019, Université Paris-Est

Cette thèse située dans le cadre de la combinatoire bijective a pour sujet plusieurs familles d'arbres et de chemins, objets classiques de la combinatoire, et… (more)

Subjects/Keywords: Combinatoire; Bijections; Arbres; Chemins; Fractions continues; Polynômes; Combinatorics; Bijections; Trees; Walks; Continued fractions; Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Randazzo, L. (2019). Combinatoire bijective autour d'arbres et de chemins : Bijective combinatorics on trees and walks. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2019PESC2059

Chicago Manual of Style (16th Edition):

Randazzo, Lucas. “Combinatoire bijective autour d'arbres et de chemins : Bijective combinatorics on trees and walks.” 2019. Doctoral Dissertation, Université Paris-Est. Accessed July 09, 2020. http://www.theses.fr/2019PESC2059.

MLA Handbook (7th Edition):

Randazzo, Lucas. “Combinatoire bijective autour d'arbres et de chemins : Bijective combinatorics on trees and walks.” 2019. Web. 09 Jul 2020.

Vancouver:

Randazzo L. Combinatoire bijective autour d'arbres et de chemins : Bijective combinatorics on trees and walks. [Internet] [Doctoral dissertation]. Université Paris-Est; 2019. [cited 2020 Jul 09]. Available from: http://www.theses.fr/2019PESC2059.

Council of Science Editors:

Randazzo L. Combinatoire bijective autour d'arbres et de chemins : Bijective combinatorics on trees and walks. [Doctoral Dissertation]. Université Paris-Est; 2019. Available from: http://www.theses.fr/2019PESC2059

5. García de León, Pedro Lenin. Quantification de variables conjuguées par états cohérents : Coherent state quantization for conjugated variables.

Degree: Docteur es, Informatique, 2008, Université Paris-Est

Dans ce travail on se concentre sur une méthode alternative de quantification a travers des états cohérents. La méthode canonique associe un pair de variables… (more)

Subjects/Keywords: Quantification

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

García de León, P. L. (2008). Quantification de variables conjuguées par états cohérents : Coherent state quantization for conjugated variables. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2008PEST0210

Chicago Manual of Style (16th Edition):

García de León, Pedro Lenin. “Quantification de variables conjuguées par états cohérents : Coherent state quantization for conjugated variables.” 2008. Doctoral Dissertation, Université Paris-Est. Accessed July 09, 2020. http://www.theses.fr/2008PEST0210.

MLA Handbook (7th Edition):

García de León, Pedro Lenin. “Quantification de variables conjuguées par états cohérents : Coherent state quantization for conjugated variables.” 2008. Web. 09 Jul 2020.

Vancouver:

García de León PL. Quantification de variables conjuguées par états cohérents : Coherent state quantization for conjugated variables. [Internet] [Doctoral dissertation]. Université Paris-Est; 2008. [cited 2020 Jul 09]. Available from: http://www.theses.fr/2008PEST0210.

Council of Science Editors:

García de León PL. Quantification de variables conjuguées par états cohérents : Coherent state quantization for conjugated variables. [Doctoral Dissertation]. Université Paris-Est; 2008. Available from: http://www.theses.fr/2008PEST0210

.