Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"Universidade Estadual de Campinas" +contributor:("Sviridova, Irina"). Showing records 1 – 3 of 3 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Macêdo, David Levi da Silva, 1992-. Identidades polinomiais em representações de álgebras de Lie e crescimento das codimensões: Polynomial identities of representations of Lie algebras and growth of the codimensions.

Degree: 2019, Universidade Estadual de Campinas

Abstract: In this thesis we study polynomial identities of representations of Lie algebras, which are a particular case of weak identities. These identities are related to pairs of the form (A,L) where A is an associative enveloping algebra for the Lie algebra L. First we obtain a characterization of ideals of weak identities with polynomial growth of codimensions in terms of their cocharacter sequence, over a field of characteristic zero. Moreover we prove that the pairs (UT2,UT2(-)), (E,E(-)) and (M2,sl2) generate varieties of pairs with almost polynomial growth. Here E denotes the infinite dimensional Grassmann algebra with 1. Also UT2 is the associative subalgebra of M2 (the 2 X 2 matrices over the field K) consisting of the upper triangular matrices and sl2 is the Lie subalgebra of M2(-) consisting of the traceless matrices. Second we show that any variety of pairs of associative type is generated by the Grassmann envelope of a finitely generated superpair. As a corollary we obtain that any special variety of pairs which does not contain pairs of type (R,sl2), consists of pairs with a solvable Lie algebra. Finally we give an example of a pair that contradicts a conjecture due to Amitsur. The Amitsur's conjecture is valid in the associative case, and also in some classes of Lie and Jordan algebras, and in identities of finite dimensional representations of Lie algebras Advisors/Committee Members: UNIVERSIDADE ESTADUAL DE CAMPINAS (CRUESP), Kochloukov, Plamen Emilov, 1958- (advisor), Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica (institution), Programa de Pós-Graduação em Matemática (nameofprogram), Moura, Adriano Adrega de (committee member), Centrone, Lucio (committee member), Sviridova, Irina (committee member), Krassilnikov, Alexei Nikolaevich (committee member).

Subjects/Keywords: Álgebras associativas; Lie, Álgebra de; Representações de álgebras; Associative algebras; Lie algebras; Representations of algebras

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Macêdo, David Levi da Silva, 1. (2019). Identidades polinomiais em representações de álgebras de Lie e crescimento das codimensões: Polynomial identities of representations of Lie algebras and growth of the codimensions. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/335168

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Macêdo, David Levi da Silva, 1992-. “Identidades polinomiais em representações de álgebras de Lie e crescimento das codimensões: Polynomial identities of representations of Lie algebras and growth of the codimensions.” 2019. Thesis, Universidade Estadual de Campinas. Accessed January 22, 2021. http://repositorio.unicamp.br/jspui/handle/REPOSIP/335168.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Macêdo, David Levi da Silva, 1992-. “Identidades polinomiais em representações de álgebras de Lie e crescimento das codimensões: Polynomial identities of representations of Lie algebras and growth of the codimensions.” 2019. Web. 22 Jan 2021.

Vancouver:

Macêdo, David Levi da Silva 1. Identidades polinomiais em representações de álgebras de Lie e crescimento das codimensões: Polynomial identities of representations of Lie algebras and growth of the codimensions. [Internet] [Thesis]. Universidade Estadual de Campinas; 2019. [cited 2021 Jan 22]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/335168.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Macêdo, David Levi da Silva 1. Identidades polinomiais em representações de álgebras de Lie e crescimento das codimensões: Polynomial identities of representations of Lie algebras and growth of the codimensions. [Thesis]. Universidade Estadual de Campinas; 2019. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/335168

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universidade Estadual de Campinas

2. Bezerra Junior, Claudemir Fideles, 1987-. Polinômios centrais graduados em álgebras associativas, e mergulhos de álgebras de Jordan: Graded central polynomials in associative algebras, and embeddings of Jordan algebras.

Degree: 2017, Universidade Estadual de Campinas

Subjects/Keywords: Álgebra não-comutativa; PI-álgebras; Polinômios; Jordan, Álgebras de; Noncommutative algebras; PI-algebras; Polynomials; Jordan algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bezerra Junior, Claudemir Fideles, 1. (2017). Polinômios centrais graduados em álgebras associativas, e mergulhos de álgebras de Jordan: Graded central polynomials in associative algebras, and embeddings of Jordan algebras. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/333017

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bezerra Junior, Claudemir Fideles, 1987-. “Polinômios centrais graduados em álgebras associativas, e mergulhos de álgebras de Jordan: Graded central polynomials in associative algebras, and embeddings of Jordan algebras.” 2017. Thesis, Universidade Estadual de Campinas. Accessed January 22, 2021. http://repositorio.unicamp.br/jspui/handle/REPOSIP/333017.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bezerra Junior, Claudemir Fideles, 1987-. “Polinômios centrais graduados em álgebras associativas, e mergulhos de álgebras de Jordan: Graded central polynomials in associative algebras, and embeddings of Jordan algebras.” 2017. Web. 22 Jan 2021.

Vancouver:

Bezerra Junior, Claudemir Fideles 1. Polinômios centrais graduados em álgebras associativas, e mergulhos de álgebras de Jordan: Graded central polynomials in associative algebras, and embeddings of Jordan algebras. [Internet] [Thesis]. Universidade Estadual de Campinas; 2017. [cited 2021 Jan 22]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/333017.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bezerra Junior, Claudemir Fideles 1. Polinômios centrais graduados em álgebras associativas, e mergulhos de álgebras de Jordan: Graded central polynomials in associative algebras, and embeddings of Jordan algebras. [Thesis]. Universidade Estadual de Campinas; 2017. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/333017

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universidade Estadual de Campinas

3. Souza, Manuela da Silva, 1985-. Propriedade de Specht e crescimento das identidades polinomiais graduadas de sl_2: Specht property and growth of the graded polynomial identities of sl_2.

Degree: 2013, Universidade Estadual de Campinas

Abstract: The abstract is available with the full electronic document Advisors/Committee Members: UNIVERSIDADE ESTADUAL DE CAMPINAS (CRUESP), Kochloukov, Plamen Emilov, 1958- (advisor), Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica (institution), Programa de Pós-Graduação em Matemática (nameofprogram), Junior, Henrique Guzzo (committee member), Sviridova, Irina (committee member), Petrogradsky, Victor Mikhaylovich (committee member), Moura, Adriano Adrega de (committee member).

Subjects/Keywords: Álgebras não-associativas; PI-álgebras; Lie, Álgebra de; Identidade polinomial graduada; Nonassociative algebras; PI-algebras; Lie algebra; Graded polynomial identity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Souza, Manuela da Silva, 1. (2013). Propriedade de Specht e crescimento das identidades polinomiais graduadas de sl_2: Specht property and growth of the graded polynomial identities of sl_2. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/306362

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Souza, Manuela da Silva, 1985-. “Propriedade de Specht e crescimento das identidades polinomiais graduadas de sl_2: Specht property and growth of the graded polynomial identities of sl_2.” 2013. Thesis, Universidade Estadual de Campinas. Accessed January 22, 2021. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306362.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Souza, Manuela da Silva, 1985-. “Propriedade de Specht e crescimento das identidades polinomiais graduadas de sl_2: Specht property and growth of the graded polynomial identities of sl_2.” 2013. Web. 22 Jan 2021.

Vancouver:

Souza, Manuela da Silva 1. Propriedade de Specht e crescimento das identidades polinomiais graduadas de sl_2: Specht property and growth of the graded polynomial identities of sl_2. [Internet] [Thesis]. Universidade Estadual de Campinas; 2013. [cited 2021 Jan 22]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306362.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Souza, Manuela da Silva 1. Propriedade de Specht e crescimento das identidades polinomiais graduadas de sl_2: Specht property and growth of the graded polynomial identities of sl_2. [Thesis]. Universidade Estadual de Campinas; 2013. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306362

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.