Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `+publisher:"Universidade Estadual de Campinas" +contributor:("Gorodski, Claudio")`

.
Showing records 1 – 3 of
3 total matches.

▼ Search Limiters

Universidade Estadual de Campinas

1.
Sperança, Llohann Dallagnol, 1986-.
Geometria e topologia *de* cobordos: Geometry and topology of cobondaries.

Degree: 2012, Universidade Estadual de Campinas

URL: http://repositorio.unicamp.br/jspui/handle/REPOSIP/307262

Abstract: In this work we study the geometry and topology of manifolds homemorphic, but not diffeomorphic, to the standard sphere Sn, the so called exotic spheres. We realize two of these manifolds as isometric quotients of principal bundles with connection metrics over the constant curved sphere. Through this, we present symmetries in these spaces and explicit examples of diffeomorphisms not isotopic to the identity, using them for the calculation of equivariant homotopy groups. As another application, we prove that, if a homotopy 15-sphere is realizeble as the total space of a linear bundle over the standard 8-sphere, then, it is realizeble as the total space of a linear bundle over the exotic 8-sphere with the same transition maps. In the last chapter we deal with the geometry of pull-back bundles, deducing a necessary condition on the pull-back map for nonnegative curvature of the induced connection metric
*Advisors/Committee Members: UNIVERSIDADE ESTADUAL DE CAMPINAS (CRUESP), Rigas, Alcibiades, 1947- (advisor), Duran Fernandez, Carlos Eduardo, 1967- (coadvisor), Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica (institution), Programa de Pós-Graduação em Matemática (nameofprogram), Gorodski, Claudio (committee member), Ziller, Wolfgang (committee member), Jardim, Marcos Benevenuto (committee member), Barros, Tomas Edson (committee member).*

Subjects/Keywords: Topologia diferencial; Difeomorfismos; Submersões riemanianas; Variedades riemanianas; Geometria diferencial; Differential topology; Diffeomorphisms; Riemannian submersions; Riemannian manifolds; Differential geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sperança, Llohann Dallagnol, 1. (2012). Geometria e topologia de cobordos: Geometry and topology of cobondaries. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/307262

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sperança, Llohann Dallagnol, 1986-. “Geometria e topologia de cobordos: Geometry and topology of cobondaries.” 2012. Thesis, Universidade Estadual de Campinas. Accessed December 01, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307262.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sperança, Llohann Dallagnol, 1986-. “Geometria e topologia de cobordos: Geometry and topology of cobondaries.” 2012. Web. 01 Dec 2020.

Vancouver:

Sperança, Llohann Dallagnol 1. Geometria e topologia de cobordos: Geometry and topology of cobondaries. [Internet] [Thesis]. Universidade Estadual de Campinas; 2012. [cited 2020 Dec 01]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/307262.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sperança, Llohann Dallagnol 1. Geometria e topologia de cobordos: Geometry and topology of cobondaries. [Thesis]. Universidade Estadual de Campinas; 2012. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/307262

Not specified: Masters Thesis or Doctoral Dissertation

Universidade Estadual de Campinas

2.
Rabelo, Lonardo, 1983-.
Homologia e cohomologia *de* variedades flag reais: Homology and cohomology of real flag manifolds.

Degree: 2012, Universidade Estadual de Campinas

URL: http://repositorio.unicamp.br/jspui/handle/REPOSIP/305806

Abstract: This thesis presents an approach for the study of topology of real flag manifolds. The homology is obtained by the determination of the boundary operator for the cellular homology. This follows from an explicit parametrization of the Schubert cells which gives a cellular structure for these manifolds. For the cohomology ring of a maximal flag manifold, its generators are found as Stiefel-Whitney classes of a line fiber bundle over the flag manifold
*Advisors/Committee Members: UNIVERSIDADE ESTADUAL DE CAMPINAS (CRUESP), San Martin, Luiz Antonio Barrera, 1955- (advisor), Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica (institution), Programa de Pós-Graduação em Matemática (nameofprogram), Rezende, Ketty Abaroa de (committee member), Ferreira, Lucas Conque Seco (committee member), Gorodski, Claudio (committee member), Pergher, Pedro Luiz Queiroz (committee member).*

Subjects/Keywords: Espaços homogêneos; Lie, Grupos de; Topologia algébrica; Lie, Álgebra de; Homologia (Matemática); Homogeneous spaces; Lie groups; Algebraic topology; Lie algebras; Homology theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rabelo, Lonardo, 1. (2012). Homologia e cohomologia de variedades flag reais: Homology and cohomology of real flag manifolds. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/305806

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Rabelo, Lonardo, 1983-. “Homologia e cohomologia de variedades flag reais: Homology and cohomology of real flag manifolds.” 2012. Thesis, Universidade Estadual de Campinas. Accessed December 01, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305806.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Rabelo, Lonardo, 1983-. “Homologia e cohomologia de variedades flag reais: Homology and cohomology of real flag manifolds.” 2012. Web. 01 Dec 2020.

Vancouver:

Rabelo, Lonardo 1. Homologia e cohomologia de variedades flag reais: Homology and cohomology of real flag manifolds. [Internet] [Thesis]. Universidade Estadual de Campinas; 2012. [cited 2020 Dec 01]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/305806.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rabelo, Lonardo 1. Homologia e cohomologia de variedades flag reais: Homology and cohomology of real flag manifolds. [Thesis]. Universidade Estadual de Campinas; 2012. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/305806

Not specified: Masters Thesis or Doctoral Dissertation

Universidade Estadual de Campinas

3.
Struchiner, Ivan.
O algebroide classificante *de* uma estrutura geometrica: The classifying Lie algebroid of a geometric structure.

Degree: 2009, Universidade Estadual de Campinas

URL: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306518

Abstract: The purpose of this thesis is to show how to use Lie algebroids and Lie groupoids to get a better understanding of problems concerning symmetries, invariants and moduli spaces of geometric structures of finite type. In general terms, these structures are objects defined on manifolds which can be characterized by a coframe (on a possibly different manifold). Examples include G-structures of finite type and Cartan geometries. For a given class of such structures whose moduli space (of germs) of elements is finite dimensional, we are able to construct a Lie algebroid A ! X, called the classifying Lie algebroid, which has the following properties: 1. To each point on the base X there corresponds a germ of a geometric structure which belongs to the class. 2. Two such germs are isomorphic if and only if they correspond to the same point in X. 3. The isotropy Lie algebra of A at a point x is the symmetry Lie algebra of the corresponding geometric structure. 4. If two germs of the geometric structure belong to the same connected manifold, then they correspond to points on the same orbit of A in X. Moreover, when the classifying Lie algebroid is integrable, its Lie groupoid can be used to construct explicit models of the geometries in the class being described. These models turn out to be universal in the sense that every other geometric structure in the class is locally isomorphic to one of these models, and globally equivalent up to covering to an open set of one of these models. We describe this throughly when the geometric structure in consideration is a finite type G-structure. One of the consequences of our construction is that the classifying Lie algebroid can be used to obtain invariants of the corresponding geometric structures. We present two examples of invariants that are induced by the cohomology of the Lie algebroid. The method that we use to prove the statements above is to define the notion of a Maurer-Cartan form on a Lie groupoid, as well as a Maurer-Cartan equation for Lie algebroid valued differential one forms. We then prove a universal property for the Maurer-Cartan form of a Lie groupoid. We believe that these results are of independent interest. To conclude this thesis, we give a description of several examples related to torsionfree connections on G-structures. Our main class of examples are the special symplectic connections for which we include a detailed discussion.
*Advisors/Committee Members: UNIVERSIDADE ESTADUAL DE CAMPINAS (CRUESP), Fernandes, Rui Loja (advisor), San Martin, Luiz Antonio Barrera, 1955- (coadvisor), Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica (institution), Programa de Pós-Graduação em Matemática (nameofprogram), Catuogno, Pedro Jose (committee member), Negreiros, Caio José Colletti (committee member), Bursztyn, Henrique (committee member), Gorodski, Claudio (committee member), Silva, Marcos Martins Alexandrino da (committee member).*

Subjects/Keywords: Lie, Algebróide de; Lie, Simetrias de; Geometria diferencial; Lie algebroid; Lie symmetries; Differential geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Struchiner, I. (2009). O algebroide classificante de uma estrutura geometrica: The classifying Lie algebroid of a geometric structure. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/306518

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Struchiner, Ivan. “O algebroide classificante de uma estrutura geometrica: The classifying Lie algebroid of a geometric structure.” 2009. Thesis, Universidade Estadual de Campinas. Accessed December 01, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306518.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Struchiner, Ivan. “O algebroide classificante de uma estrutura geometrica: The classifying Lie algebroid of a geometric structure.” 2009. Web. 01 Dec 2020.

Vancouver:

Struchiner I. O algebroide classificante de uma estrutura geometrica: The classifying Lie algebroid of a geometric structure. [Internet] [Thesis]. Universidade Estadual de Campinas; 2009. [cited 2020 Dec 01]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306518.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Struchiner I. O algebroide classificante de uma estrutura geometrica: The classifying Lie algebroid of a geometric structure. [Thesis]. Universidade Estadual de Campinas; 2009. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306518

Not specified: Masters Thesis or Doctoral Dissertation