Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"Universidade Estadual de Campinas" +contributor:("Fourier, Ghislain"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Martins, Victor do Nascimento, 1989-. Truncated Weyl modules as Chari-Venkatesh modules and fusion products : Módulos de Weyl truncados via módulos de Chari-Venkatesh e produtos de fusão: Módulos de Weyl truncados via módulos de Chari-Venkatesh e produtos de fusão.

Degree: 2017, Universidade Estadual de Campinas

Abstract: We study structural properties of truncated Weyl modules. Given a simple Lie algebra g and a dominant integral weight λ, the graded local Weyl module W(λ) is the universal finite-dimensional graded highest-weight module for the current algebra g[t]= g\otimes C[t]. For each positive integer N, the quotient WN(λ) of W(λ) by the submodule generated by the action of the ideal g\otimes tNC[t] on the highest-weight vector is called a truncated Weyl module. It satisfies the same universal property as W(λ) when regarded as a module for the corresponding truncated current algebra g[t]N=g \otimes \frac{C[t]}{tNC[t]}. Chari-Fourier-Sagaki conjectured that if N ≤  |λ|, WN(λ) should be isomorphic to the fusion product of certain irreducible modules. Our main result proves this conjecture when λ is a multiple of a minuscule weight and g is simply laced. We also take a further step towards proving the conjecture for multiples of a ''small'' fundamental weight which is not minuscule by proving that the corresponding truncated Weyl module is isomorphic to the quotient of a fusion product of Kirillov-Reshetikhin modules by a very simple relation. One important part of the proof of our main result, and the second main result of this work, is a proof that any truncated Weyl module is isomorphic to a Chari-Venkatesh module and explicitly describes the corresponding family of partitions. This leads to further results in the case that g={sl}2 related to Demazure flags and chains of inclusions of truncated Weyl modules Advisors/Committee Members: UNIVERSIDADE ESTADUAL DE CAMPINAS (CRUESP), Moura, Adriano Adrega de, 1975- (advisor), Fourier, Ghislain (coadvisor), Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica (institution), Programa de Pós-Graduação em Matemática (nameofprogram), Kochloukov, Plamen Emilov (committee member), Matucci, Francesco (committee member), Guerreiro, Marines (committee member).

Subjects/Keywords: Weyl, Módulos de; Produtos tensoriais; Representações de álgebras; Kac-Moody, Algebras de; Weyl modules; Tensor product; Representations of algebras; Kac-Moody algebras

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Martins, Victor do Nascimento, 1. (2017). Truncated Weyl modules as Chari-Venkatesh modules and fusion products : Módulos de Weyl truncados via módulos de Chari-Venkatesh e produtos de fusão: Módulos de Weyl truncados via módulos de Chari-Venkatesh e produtos de fusão. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/332339

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Martins, Victor do Nascimento, 1989-. “Truncated Weyl modules as Chari-Venkatesh modules and fusion products : Módulos de Weyl truncados via módulos de Chari-Venkatesh e produtos de fusão: Módulos de Weyl truncados via módulos de Chari-Venkatesh e produtos de fusão.” 2017. Thesis, Universidade Estadual de Campinas. Accessed February 28, 2021. http://repositorio.unicamp.br/jspui/handle/REPOSIP/332339.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Martins, Victor do Nascimento, 1989-. “Truncated Weyl modules as Chari-Venkatesh modules and fusion products : Módulos de Weyl truncados via módulos de Chari-Venkatesh e produtos de fusão: Módulos de Weyl truncados via módulos de Chari-Venkatesh e produtos de fusão.” 2017. Web. 28 Feb 2021.

Vancouver:

Martins, Victor do Nascimento 1. Truncated Weyl modules as Chari-Venkatesh modules and fusion products : Módulos de Weyl truncados via módulos de Chari-Venkatesh e produtos de fusão: Módulos de Weyl truncados via módulos de Chari-Venkatesh e produtos de fusão. [Internet] [Thesis]. Universidade Estadual de Campinas; 2017. [cited 2021 Feb 28]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/332339.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Martins, Victor do Nascimento 1. Truncated Weyl modules as Chari-Venkatesh modules and fusion products : Módulos de Weyl truncados via módulos de Chari-Venkatesh e produtos de fusão: Módulos de Weyl truncados via módulos de Chari-Venkatesh e produtos de fusão. [Thesis]. Universidade Estadual de Campinas; 2017. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/332339

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.