Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `+publisher:"Texas Tech University" +contributor:("Bornia, Giorgio")`

.
Showing records 1 – 4 of
4 total matches.

▼ Search Limiters

Texas Tech University

1. -0105-8680. Optimal control of shape-similar multi-agent systems.

Degree: MS, Mathematics, 2018, Texas Tech University

URL: http://hdl.handle.net/2346/74337

► Formation control problems in the field of control theory are not new. They pertain to multiple mobile agents i.e. robots that are placed in a…
(more)

Subjects/Keywords: Mathematics; Control Theory; Shape-similar; Multi-agent; Optimal Control

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

-0105-8680. (2018). Optimal control of shape-similar multi-agent systems. (Masters Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/74337

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

Chicago Manual of Style (16^{th} Edition):

-0105-8680. “Optimal control of shape-similar multi-agent systems.” 2018. Masters Thesis, Texas Tech University. Accessed September 26, 2020. http://hdl.handle.net/2346/74337.

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

MLA Handbook (7^{th} Edition):

-0105-8680. “Optimal control of shape-similar multi-agent systems.” 2018. Web. 26 Sep 2020.

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

Vancouver:

-0105-8680. Optimal control of shape-similar multi-agent systems. [Internet] [Masters thesis]. Texas Tech University; 2018. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/2346/74337.

Author name may be incomplete

Council of Science Editors:

-0105-8680. Optimal control of shape-similar multi-agent systems. [Masters Thesis]. Texas Tech University; 2018. Available from: http://hdl.handle.net/2346/74337

Author name may be incomplete

Texas Tech University

2. Perera, Sulanie. Comparison of Optimal and Geometric Control Methods for regulation of distributed parameter systems.

Degree: 2013, Texas Tech University

URL: http://hdl.handle.net/2346/48908

► This thesis is concerned with several aspects of set-point control for distributed parameter systems. We first present the geometric design methodology for set-point control. We…
(more)

Subjects/Keywords: Set-point control; Overdetermined system; Pseudo-inverse

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Perera, S. (2013). Comparison of Optimal and Geometric Control Methods for regulation of distributed parameter systems. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/48908

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Perera, Sulanie. “Comparison of Optimal and Geometric Control Methods for regulation of distributed parameter systems.” 2013. Thesis, Texas Tech University. Accessed September 26, 2020. http://hdl.handle.net/2346/48908.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Perera, Sulanie. “Comparison of Optimal and Geometric Control Methods for regulation of distributed parameter systems.” 2013. Web. 26 Sep 2020.

Vancouver:

Perera S. Comparison of Optimal and Geometric Control Methods for regulation of distributed parameter systems. [Internet] [Thesis]. Texas Tech University; 2013. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/2346/48908.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Perera S. Comparison of Optimal and Geometric Control Methods for regulation of distributed parameter systems. [Thesis]. Texas Tech University; 2013. Available from: http://hdl.handle.net/2346/48908

Not specified: Masters Thesis or Doctoral Dissertation

3. -0284-2733. Adaptive mesh refinement for Multigrid Solver.

Degree: MS, Mathematics, 2016, Texas Tech University

URL: http://hdl.handle.net/2346/72358

► In this work, we introduce the Galerkin finite element Method for Elliptic Problems. The estimates of the approximation error in both energy norm and L^{2}…
(more)

Subjects/Keywords: Numerical method; Adaptive refinement.

…*Texas* *Tech* *University*, Shih-Yu Lee, December 2016
in terms of both computational time and… …the number of elements.
2
*Texas* *Tech* *University*, Shih-Yu Lee, December 2016
CHAPTER II… …x28;2.7)
*Texas* *Tech* *University*, Shih-Yu Lee, December 2016
f being a function of L2 (… …x29;
*Texas* *Tech* *University*, Shih-Yu Lee, December 2016
Denoting with {ϕj ,
j = 1, 2… …can be a tetrahedron, a prism,
or a hexahedron.
6
*Texas* *Tech* *University*, Shih-Yu Lee…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

-0284-2733. (2016). Adaptive mesh refinement for Multigrid Solver. (Masters Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/72358

Author name may be incomplete

Chicago Manual of Style (16^{th} Edition):

-0284-2733. “Adaptive mesh refinement for Multigrid Solver.” 2016. Masters Thesis, Texas Tech University. Accessed September 26, 2020. http://hdl.handle.net/2346/72358.

Author name may be incomplete

MLA Handbook (7^{th} Edition):

-0284-2733. “Adaptive mesh refinement for Multigrid Solver.” 2016. Web. 26 Sep 2020.

Author name may be incomplete

Vancouver:

-0284-2733. Adaptive mesh refinement for Multigrid Solver. [Internet] [Masters thesis]. Texas Tech University; 2016. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/2346/72358.

Author name may be incomplete

Council of Science Editors:

-0284-2733. Adaptive mesh refinement for Multigrid Solver. [Masters Thesis]. Texas Tech University; 2016. Available from: http://hdl.handle.net/2346/72358

Author name may be incomplete

4. Capodaglio, Giacomo. Multigrid methods for finite element applications with arbitrary-level hanging node configurations.

Degree: PhD, Mathematics, 2018, Texas Tech University

URL: http://hdl.handle.net/2346/73836

► In this dissertation, multigrid methods for finite element applications with arbitrary-level hanging nodes are considered. When a local midpoint refinement procedure is carried out on…
(more)

Subjects/Keywords: Multigrid; Finite Element Method; Hanging Nodes; Local Refinement; Iterative Methods; Successive Subspace Correction

…*Texas* *Tech* *University*, Giacomo Capodaglio, May 2018
results obtained with existing… …of the underlying PDE lacks regularity.
vii
*Texas* *Tech* *University*, Giacomo Capodaglio… …viii
93
*Texas* *Tech* *University*, Giacomo Capodaglio, May 2018
III.3 Spectral radius of EJ… …coefficients. . . . . . . . . . . . . . . . . 105
ix
*Texas* *Tech* *University*, Giacomo Capodaglio… …dimensional buoyancy driven flow with P r = 1 and Ra = 10000.
44
x
*Texas* *Tech* *University*…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Capodaglio, G. (2018). Multigrid methods for finite element applications with arbitrary-level hanging node configurations. (Doctoral Dissertation). Texas Tech University. Retrieved from http://hdl.handle.net/2346/73836

Chicago Manual of Style (16^{th} Edition):

Capodaglio, Giacomo. “Multigrid methods for finite element applications with arbitrary-level hanging node configurations.” 2018. Doctoral Dissertation, Texas Tech University. Accessed September 26, 2020. http://hdl.handle.net/2346/73836.

MLA Handbook (7^{th} Edition):

Capodaglio, Giacomo. “Multigrid methods for finite element applications with arbitrary-level hanging node configurations.” 2018. Web. 26 Sep 2020.

Vancouver:

Capodaglio G. Multigrid methods for finite element applications with arbitrary-level hanging node configurations. [Internet] [Doctoral dissertation]. Texas Tech University; 2018. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/2346/73836.

Council of Science Editors:

Capodaglio G. Multigrid methods for finite element applications with arbitrary-level hanging node configurations. [Doctoral Dissertation]. Texas Tech University; 2018. Available from: http://hdl.handle.net/2346/73836