Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"Texas State University – San Marcos" +contributor:("Curtin, Eugene"). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Texas State University – San Marcos

1. Farrell, Megan K. Using Knot Theory to Model and Analyze DNA Replication and Recombination.

Degree: MS, Mathematics, 2018, Texas State University – San Marcos

 Due to DNA supercoiling inside the nucleus of a cell, DNA can be modeled as a mathematical knot. We will analyze and examine the knots… (more)

Subjects/Keywords: Knot Theory; Topology; DNA; Math modeling; Tangle model; Tangles; Knot theory; DNA replication

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Farrell, M. K. (2018). Using Knot Theory to Model and Analyze DNA Replication and Recombination. (Masters Thesis). Texas State University – San Marcos. Retrieved from https://digital.library.txstate.edu/handle/10877/7783

Chicago Manual of Style (16th Edition):

Farrell, Megan K. “Using Knot Theory to Model and Analyze DNA Replication and Recombination.” 2018. Masters Thesis, Texas State University – San Marcos. Accessed January 18, 2020. https://digital.library.txstate.edu/handle/10877/7783.

MLA Handbook (7th Edition):

Farrell, Megan K. “Using Knot Theory to Model and Analyze DNA Replication and Recombination.” 2018. Web. 18 Jan 2020.

Vancouver:

Farrell MK. Using Knot Theory to Model and Analyze DNA Replication and Recombination. [Internet] [Masters thesis]. Texas State University – San Marcos; 2018. [cited 2020 Jan 18]. Available from: https://digital.library.txstate.edu/handle/10877/7783.

Council of Science Editors:

Farrell MK. Using Knot Theory to Model and Analyze DNA Replication and Recombination. [Masters Thesis]. Texas State University – San Marcos; 2018. Available from: https://digital.library.txstate.edu/handle/10877/7783


Texas State University – San Marcos

2. McAlmon, Robert. Bruhat Order and Coxeter Hyperplane Arrangements.

Degree: MS, Mathematics, 2018, Texas State University – San Marcos

 In the paper “Bruhat order, rationally smooth Schubert varieties, and hyperplane arrangements,” S. Oh and H. Yoo studied Schubert varieties in generalized flag manifolds by… (more)

Subjects/Keywords: Bruhat order; Parabolic quotients; Hyperplanes; Coxeter arrangement; Palindromic; Symmetric functions; Schubert varieties

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McAlmon, R. (2018). Bruhat Order and Coxeter Hyperplane Arrangements. (Masters Thesis). Texas State University – San Marcos. Retrieved from https://digital.library.txstate.edu/handle/10877/7366

Chicago Manual of Style (16th Edition):

McAlmon, Robert. “Bruhat Order and Coxeter Hyperplane Arrangements.” 2018. Masters Thesis, Texas State University – San Marcos. Accessed January 18, 2020. https://digital.library.txstate.edu/handle/10877/7366.

MLA Handbook (7th Edition):

McAlmon, Robert. “Bruhat Order and Coxeter Hyperplane Arrangements.” 2018. Web. 18 Jan 2020.

Vancouver:

McAlmon R. Bruhat Order and Coxeter Hyperplane Arrangements. [Internet] [Masters thesis]. Texas State University – San Marcos; 2018. [cited 2020 Jan 18]. Available from: https://digital.library.txstate.edu/handle/10877/7366.

Council of Science Editors:

McAlmon R. Bruhat Order and Coxeter Hyperplane Arrangements. [Masters Thesis]. Texas State University – San Marcos; 2018. Available from: https://digital.library.txstate.edu/handle/10877/7366


Texas State University – San Marcos

3. Harrison, Anthony W. Bounding the Order of a Group with a Large Conjugacy Class.

Degree: MS, Mathematics, 2013, Texas State University – San Marcos

No abstract prepared. Advisors/Committee Members: Keller, Thomas (advisor), Acosta, Maria Teodora (committee member), Curtin, Eugene (committee member).

Subjects/Keywords: Algebra; Finite groups; Conjugacy classes; Group theory; Conjugacy classes; Mathematics; Finite groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Harrison, A. W. (2013). Bounding the Order of a Group with a Large Conjugacy Class. (Masters Thesis). Texas State University – San Marcos. Retrieved from https://digital.library.txstate.edu/handle/10877/4718

Chicago Manual of Style (16th Edition):

Harrison, Anthony W. “Bounding the Order of a Group with a Large Conjugacy Class.” 2013. Masters Thesis, Texas State University – San Marcos. Accessed January 18, 2020. https://digital.library.txstate.edu/handle/10877/4718.

MLA Handbook (7th Edition):

Harrison, Anthony W. “Bounding the Order of a Group with a Large Conjugacy Class.” 2013. Web. 18 Jan 2020.

Vancouver:

Harrison AW. Bounding the Order of a Group with a Large Conjugacy Class. [Internet] [Masters thesis]. Texas State University – San Marcos; 2013. [cited 2020 Jan 18]. Available from: https://digital.library.txstate.edu/handle/10877/4718.

Council of Science Editors:

Harrison AW. Bounding the Order of a Group with a Large Conjugacy Class. [Masters Thesis]. Texas State University – San Marcos; 2013. Available from: https://digital.library.txstate.edu/handle/10877/4718


Texas State University – San Marcos

4. Hruzek, Emilie-Anne Francis. Graphical Representations of Topologies on a Finite Set.

Degree: MS, Mathematics, 2013, Texas State University – San Marcos

No abstract prepared. Advisors/Committee Members: Curtin, Eugene (advisor), Snyder, David (committee member), Shen, Jian (committee member).

Subjects/Keywords: Topology; Finite set; Graph theory; Recursion; Graph theory; Set theory – Research; Mathematical analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hruzek, E. F. (2013). Graphical Representations of Topologies on a Finite Set. (Masters Thesis). Texas State University – San Marcos. Retrieved from https://digital.library.txstate.edu/handle/10877/4871

Chicago Manual of Style (16th Edition):

Hruzek, Emilie-Anne Francis. “Graphical Representations of Topologies on a Finite Set.” 2013. Masters Thesis, Texas State University – San Marcos. Accessed January 18, 2020. https://digital.library.txstate.edu/handle/10877/4871.

MLA Handbook (7th Edition):

Hruzek, Emilie-Anne Francis. “Graphical Representations of Topologies on a Finite Set.” 2013. Web. 18 Jan 2020.

Vancouver:

Hruzek EF. Graphical Representations of Topologies on a Finite Set. [Internet] [Masters thesis]. Texas State University – San Marcos; 2013. [cited 2020 Jan 18]. Available from: https://digital.library.txstate.edu/handle/10877/4871.

Council of Science Editors:

Hruzek EF. Graphical Representations of Topologies on a Finite Set. [Masters Thesis]. Texas State University – San Marcos; 2013. Available from: https://digital.library.txstate.edu/handle/10877/4871


Texas State University – San Marcos

5. Douthitt, James Dylan. Chip-firing on graphs: stability, the dollar game, and the Tutte polynomial.

Degree: MS, Mathematics, 2019, Texas State University – San Marcos

No abstract prepared. Advisors/Committee Members: Dochtermann, Anton M. (advisor), Curtin, Eugene (committee member), Oh, Suho (committee member).

Subjects/Keywords: Graphs; Chip-firing; Graph Laplacian; Stable configurations; Critical group; Dollar game; Tutte polynomial; Games – Mathematics; Graph theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Douthitt, J. D. (2019). Chip-firing on graphs: stability, the dollar game, and the Tutte polynomial. (Masters Thesis). Texas State University – San Marcos. Retrieved from https://digital.library.txstate.edu/handle/10877/8141

Chicago Manual of Style (16th Edition):

Douthitt, James Dylan. “Chip-firing on graphs: stability, the dollar game, and the Tutte polynomial.” 2019. Masters Thesis, Texas State University – San Marcos. Accessed January 18, 2020. https://digital.library.txstate.edu/handle/10877/8141.

MLA Handbook (7th Edition):

Douthitt, James Dylan. “Chip-firing on graphs: stability, the dollar game, and the Tutte polynomial.” 2019. Web. 18 Jan 2020.

Vancouver:

Douthitt JD. Chip-firing on graphs: stability, the dollar game, and the Tutte polynomial. [Internet] [Masters thesis]. Texas State University – San Marcos; 2019. [cited 2020 Jan 18]. Available from: https://digital.library.txstate.edu/handle/10877/8141.

Council of Science Editors:

Douthitt JD. Chip-firing on graphs: stability, the dollar game, and the Tutte polynomial. [Masters Thesis]. Texas State University – San Marcos; 2019. Available from: https://digital.library.txstate.edu/handle/10877/8141


Texas State University – San Marcos

6. Robinson, Ellen Beth. A Characterization of Oriented Hypergraphic Laplacian and Adjacency Coefficients and Minors.

Degree: MS, Mathematics, 2017, Texas State University – San Marcos

No abstract prepared. Advisors/Committee Members: Rusnak, Lucas (advisor), Shen, Jian (committee member), Curtin, Eugene (committee member), Dochtermann, Anton (committee member).

Subjects/Keywords: Graph Theory; Oriented Hypergraph; Laplacian; Weak Walk; Minors; Characteristic Polynomial; Engineering mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Robinson, E. B. (2017). A Characterization of Oriented Hypergraphic Laplacian and Adjacency Coefficients and Minors. (Masters Thesis). Texas State University – San Marcos. Retrieved from https://digital.library.txstate.edu/handle/10877/6614

Chicago Manual of Style (16th Edition):

Robinson, Ellen Beth. “A Characterization of Oriented Hypergraphic Laplacian and Adjacency Coefficients and Minors.” 2017. Masters Thesis, Texas State University – San Marcos. Accessed January 18, 2020. https://digital.library.txstate.edu/handle/10877/6614.

MLA Handbook (7th Edition):

Robinson, Ellen Beth. “A Characterization of Oriented Hypergraphic Laplacian and Adjacency Coefficients and Minors.” 2017. Web. 18 Jan 2020.

Vancouver:

Robinson EB. A Characterization of Oriented Hypergraphic Laplacian and Adjacency Coefficients and Minors. [Internet] [Masters thesis]. Texas State University – San Marcos; 2017. [cited 2020 Jan 18]. Available from: https://digital.library.txstate.edu/handle/10877/6614.

Council of Science Editors:

Robinson EB. A Characterization of Oriented Hypergraphic Laplacian and Adjacency Coefficients and Minors. [Masters Thesis]. Texas State University – San Marcos; 2017. Available from: https://digital.library.txstate.edu/handle/10877/6614

.