Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"Texas Digital Library" +contributor:("Mukherjee, Partha P"). Showing records 1 – 3 of 3 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. An, Kai. Thermo-mechanical Behavior of Lithium-ion Battery Electrodes.

Degree: 2013, Texas Digital Library

Developing electric vehicles is widely considered as a direct approach to resolve the energy and environmental challenges faced by the human race. As one of the most promising power solutions to electric cars, the lithium ion battery is expected to achieve better performance, durability and safety. Fracture induced by lithiation and deliathiation stress has been identified as a major mechanism that leads to capacity loss and performance degradation. This work aims to shed light on the thermo-mechanical behavior of lithium ion battery electrodes. It presents a single particle model of random lattice spring elements coupled with solid phase Li-ion diffusion under active temperature effects. The thermal features are realized by solving a lumped heat conduction equation and by including temperature dependent parameters. This model combined with a typical equivalent-circuit model is used to predict the impedance response of electrode particles. The fracture generation increases as the temperature decreases. However, the diffusion induced fracture is found to be proportional to the current density and particle sizes. Simulations under realistic driving conditions show that the fraction of particle damage is determined by the highest current density drawn from the battery. A 3D phase map of fracture damage is presented. The transit fracture growing process reveals a saturation phenomenon where the fraction of damage increases to a threshold value and then stabilizes. This is observed both during single discharging processes and in multiple cycle simulations. In the multicycle analysis, the charging process following the initial discharging leads to a ???re-saturation??? where the fracture experiences a second increase and then stops growing ever after. The impedance study suggests that the generation of fracture leads to increase in impedance response of electrode particles. The calculated impedance results are found to be directly related to current density and particle size but drops with increasing temperatures. Advisors/Committee Members: Mukherjee, Partha P (advisor).

Subjects/Keywords: Lithium-ion battery

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

An, K. (2013). Thermo-mechanical Behavior of Lithium-ion Battery Electrodes. (Thesis). Texas Digital Library. Retrieved from http://hdl.handle.net/1969

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

An, Kai. “Thermo-mechanical Behavior of Lithium-ion Battery Electrodes.” 2013. Thesis, Texas Digital Library. Accessed April 18, 2021. http://hdl.handle.net/1969.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

An, Kai. “Thermo-mechanical Behavior of Lithium-ion Battery Electrodes.” 2013. Web. 18 Apr 2021.

Vancouver:

An K. Thermo-mechanical Behavior of Lithium-ion Battery Electrodes. [Internet] [Thesis]. Texas Digital Library; 2013. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/1969.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

An K. Thermo-mechanical Behavior of Lithium-ion Battery Electrodes. [Thesis]. Texas Digital Library; 2013. Available from: http://hdl.handle.net/1969

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

2. An, Kai. Thermo-mechanical Behavior of Lithium-ion Battery Electrodes.

Degree: 2013, Texas Digital Library

Developing electric vehicles is widely considered as a direct approach to resolve the energy and environmental challenges faced by the human race. As one of the most promising power solutions to electric cars, the lithium ion battery is expected to achieve better performance, durability and safety. Fracture induced by lithiation and deliathiation stress has been identified as a major mechanism that leads to capacity loss and performance degradation. This work aims to shed light on the thermo-mechanical behavior of lithium ion battery electrodes. It presents a single particle model of random lattice spring elements coupled with solid phase Li-ion diffusion under active temperature effects. The thermal features are realized by solving a lumped heat conduction equation and by including temperature dependent parameters. This model combined with a typical equivalent-circuit model is used to predict the impedance response of electrode particles. The fracture generation increases as the temperature decreases. However, the diffusion induced fracture is found to be proportional to the current density and particle sizes. Simulations under realistic driving conditions show that the fraction of particle damage is determined by the highest current density drawn from the battery. A 3D phase map of fracture damage is presented. The transit fracture growing process reveals a saturation phenomenon where the fraction of damage increases to a threshold value and then stabilizes. This is observed both during single discharging processes and in multiple cycle simulations. In the multicycle analysis, the charging process following the initial discharging leads to a ???re-saturation??? where the fracture experiences a second increase and then stops growing ever after. The impedance study suggests that the generation of fracture leads to increase in impedance response of electrode particles. The calculated impedance results are found to be directly related to current density and particle size but drops with increasing temperatures. Advisors/Committee Members: Mukherjee, Partha P (advisor).

Subjects/Keywords: Lithium-ion battery

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

An, K. (2013). Thermo-mechanical Behavior of Lithium-ion Battery Electrodes. (Thesis). Texas Digital Library. Retrieved from http://hdl.handle.net/1969; http://hdl.handle.net/2249.1/66762

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

An, Kai. “Thermo-mechanical Behavior of Lithium-ion Battery Electrodes.” 2013. Thesis, Texas Digital Library. Accessed April 18, 2021. http://hdl.handle.net/1969; http://hdl.handle.net/2249.1/66762.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

An, Kai. “Thermo-mechanical Behavior of Lithium-ion Battery Electrodes.” 2013. Web. 18 Apr 2021.

Vancouver:

An K. Thermo-mechanical Behavior of Lithium-ion Battery Electrodes. [Internet] [Thesis]. Texas Digital Library; 2013. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/1969; http://hdl.handle.net/2249.1/66762.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

An K. Thermo-mechanical Behavior of Lithium-ion Battery Electrodes. [Thesis]. Texas Digital Library; 2013. Available from: http://hdl.handle.net/1969; http://hdl.handle.net/2249.1/66762

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Cho, Seongkoo. Analysis of Impedance Response in Lithium-ion Battery Electrodes.

Degree: 2013, Texas Digital Library

A major amount of degradation in battery life is in the form of chemical degradation due to the formation of Solid Electrolyte Interface (SEI) which is a passive film resulting from chemical reaction. Mechanical degradation in the form of fracture formation due to diffusion induced stress can aggravate the aging of the electrode. These mechanisms of deterioration are primary contributors on limiting the durability of Lithium-ion battery (LIB). In addition, an composition of insertion materials such as active material, additive, and binder as well as active particle???s morphological heterogeneity can influence solid-state transport, electronic conductivity and hence, battery performance. In this study, virtual 3-D microstructures of LIB electrodes with intercalation particles are designed to describe the influence of microstructure on effective electrical conductivity and the electrochemical impedance. The technique of digital stochastic modeling has been employed for the generation of electrode microstructures consisting of active material, binder, conductive additive and electrolyte. Physicochemical properties for each of the constituent phases have been duly accounted for. Mathematical models have been developed to characterize the electrochemical impedance of LIB electrode. In this work, we demonstrate the coupling of electrode microstructures to the solid state diffusion impedance response in LIB electrodes. This model considers not only the effect of heterogeneity in active particle size on the diffusion impedance response, but also the effect of electrical conductivity, interfacial surface area of the active materials, and volume fraction of the active materials in the porous electrode on the impedance response. In addition, the impact of the morphology of the active materials on the diffusion impedance response through utilization of the characteristic diffusion length of active particles and a Sauter mean particle size has been demonstrated. In order to show the effect of chemical degradation on the impedance response with focus on aging, the Li-ion diffusion inside an active particle is considered along with SEI. Finally, mechanical degradation induced increase in impedance is analyzed by coupling diffusion induced fracture with impedance. These approaches are envisioned to offer a virtual impedance response probing framework to elucidate the influence of electrode microstructural variability and underlying electrochemical and transport interactions. Advisors/Committee Members: Mukherjee, Partha P (advisor).

Subjects/Keywords: Electrochemical Impedance

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cho, S. (2013). Analysis of Impedance Response in Lithium-ion Battery Electrodes. (Thesis). Texas Digital Library. Retrieved from http://hdl.handle.net/1969; http://hdl.handle.net/2249.1/66828

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cho, Seongkoo. “Analysis of Impedance Response in Lithium-ion Battery Electrodes.” 2013. Thesis, Texas Digital Library. Accessed April 18, 2021. http://hdl.handle.net/1969; http://hdl.handle.net/2249.1/66828.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cho, Seongkoo. “Analysis of Impedance Response in Lithium-ion Battery Electrodes.” 2013. Web. 18 Apr 2021.

Vancouver:

Cho S. Analysis of Impedance Response in Lithium-ion Battery Electrodes. [Internet] [Thesis]. Texas Digital Library; 2013. [cited 2021 Apr 18]. Available from: http://hdl.handle.net/1969; http://hdl.handle.net/2249.1/66828.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cho S. Analysis of Impedance Response in Lithium-ion Battery Electrodes. [Thesis]. Texas Digital Library; 2013. Available from: http://hdl.handle.net/1969; http://hdl.handle.net/2249.1/66828

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.