Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"Temple University" +contributor:("Podder, Tarun K.;"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Temple University

1. Honarvar, Mohammad. THERMOMECHANICAL CHARACTERIZATION OF ONE-WAY SHAPE MEMORY NITINOL AS AN ACTUATOR FOR ACTIVE SURGICAL NEEDLE.

Degree: PhD, 2014, Temple University

Mechanical Engineering

Needle-based intervention insertion is one of the common surgical techniques used in many diagnostic and therapeutic percutaneous procedures. The success of such procedures highly depends on the accuracy of needle placement at target locations. An active needle has the potential to enhance the accuracy of needle placement as well as to improve clinical outcome. Bending forces provided by the attached actuators can assist the maneuverability in order to reach the targets following a desired trajectory. There are three major research parts in the development of active needle project in the Composites Laboratory of Temple University. They are thermomechanical characterization of shape memory alloy (SMA) or Nitinol as an actuator for smart needle, mechanical modeling and design of smart needles, and study of tissue needle interaction. The characterization of SMA is the focus of this dissertation. Unique thermomechanical properties of Nitinol known as shape memory effect and superelasticity make it applicable for different fields such as biomedical, structural and aerospace engineering. These unique behaviors are due to the comparatively large amount of recoverable strain which is being produced in a martensitic phase transformation. However, under certain ranges of stresses and temperatures, Nitinol wires exhibit unrecovered strain (also known as residual strain); which limits their applicability. Therefore, for applications that rely on the strain response in repetitive loading and unloading cycles, it is important to understand the generation of the unrecovered strain in the Nitinol wires. In this study, the unrecovered strain of Nitinol wires with various diameters was investigated, using two experimental approaches: constant stress and uniaxial tensile tests. Moreover, a critical range of stress was found beyond which the unrecovered strain was negligible at temperatures of 70 to 80C depending on the wire diameter. Wire diameters varied from 0.10 to 0.29 mm were tested and different ranges of critical stress were found for different wire diameters. The transformation temperatures of different wire diameters at zero stress have been achieved by performing the Differential Scanning Calorimetry (DSC) test. The actuation force created by Nitinol wire is measured through constant strain experiment. X-Ray Diffraction (XRD) study was also performed to investigate the phase of Nitinol wires under various thermomechanical loading conditions. In summary, the effect of wire diameter on the required critical stresses to avoid the unrecovered strain between first and second cycle of heating and cooling are presented and the results of both mechanical tests are justified by the results obtained from the XRD study.

Temple University – Theses

Advisors/Committee Members: Hutapea, Parsaoran;, Neretina, Svetlana, Ren, Fei, Podder, Tarun K.;.

Subjects/Keywords: Materials Science; Mechanical engineering;

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Honarvar, M. (2014). THERMOMECHANICAL CHARACTERIZATION OF ONE-WAY SHAPE MEMORY NITINOL AS AN ACTUATOR FOR ACTIVE SURGICAL NEEDLE. (Doctoral Dissertation). Temple University. Retrieved from http://digital.library.temple.edu/u?/p245801coll10,301891

Chicago Manual of Style (16th Edition):

Honarvar, Mohammad. “THERMOMECHANICAL CHARACTERIZATION OF ONE-WAY SHAPE MEMORY NITINOL AS AN ACTUATOR FOR ACTIVE SURGICAL NEEDLE.” 2014. Doctoral Dissertation, Temple University. Accessed November 26, 2020. http://digital.library.temple.edu/u?/p245801coll10,301891.

MLA Handbook (7th Edition):

Honarvar, Mohammad. “THERMOMECHANICAL CHARACTERIZATION OF ONE-WAY SHAPE MEMORY NITINOL AS AN ACTUATOR FOR ACTIVE SURGICAL NEEDLE.” 2014. Web. 26 Nov 2020.

Vancouver:

Honarvar M. THERMOMECHANICAL CHARACTERIZATION OF ONE-WAY SHAPE MEMORY NITINOL AS AN ACTUATOR FOR ACTIVE SURGICAL NEEDLE. [Internet] [Doctoral dissertation]. Temple University; 2014. [cited 2020 Nov 26]. Available from: http://digital.library.temple.edu/u?/p245801coll10,301891.

Council of Science Editors:

Honarvar M. THERMOMECHANICAL CHARACTERIZATION OF ONE-WAY SHAPE MEMORY NITINOL AS AN ACTUATOR FOR ACTIVE SURGICAL NEEDLE. [Doctoral Dissertation]. Temple University; 2014. Available from: http://digital.library.temple.edu/u?/p245801coll10,301891

.