Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `+publisher:"Rutgers University" +contributor:("Szemeredi, Endre")`

.
Showing records 1 – 8 of
8 total matches.

▼ Search Limiters

Rutgers University

1. Khan, Imdadullah, 1980-. Spanning subgraphs in graphs and hypergraphs.

Degree: PhD, Computer Science, 2011, Rutgers University

URL: http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000061299

►

This thesis consists of three new fundamental results on the existence of spanning subgraphs in graphs and hypergraphs. Cycle Factors in Graphs: A classical conjecture… (more)

Subjects/Keywords: Graph theory; Hypergraphs

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Khan, Imdadullah, 1. (2011). Spanning subgraphs in graphs and hypergraphs. (Doctoral Dissertation). Rutgers University. Retrieved from http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000061299

Chicago Manual of Style (16^{th} Edition):

Khan, Imdadullah, 1980-. “Spanning subgraphs in graphs and hypergraphs.” 2011. Doctoral Dissertation, Rutgers University. Accessed October 24, 2020. http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000061299.

MLA Handbook (7^{th} Edition):

Khan, Imdadullah, 1980-. “Spanning subgraphs in graphs and hypergraphs.” 2011. Web. 24 Oct 2020.

Vancouver:

Khan, Imdadullah 1. Spanning subgraphs in graphs and hypergraphs. [Internet] [Doctoral dissertation]. Rutgers University; 2011. [cited 2020 Oct 24]. Available from: http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000061299.

Council of Science Editors:

Khan, Imdadullah 1. Spanning subgraphs in graphs and hypergraphs. [Doctoral Dissertation]. Rutgers University; 2011. Available from: http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000061299

2. Tran, Linh V. (Linh Vinh), 1981-. Random matrices and random boxes.

Degree: PhD, Mathematics, 2011, Rutgers University

URL: http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000057700

►

This thesis concerns two questions on random structures: the semi-circular law for adjacency matrix of regular random graph and the piercing number for random boxes.… (more)

Subjects/Keywords: Random matrices; Variables (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Tran, Linh V. (Linh Vinh), 1. (2011). Random matrices and random boxes. (Doctoral Dissertation). Rutgers University. Retrieved from http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000057700

Chicago Manual of Style (16^{th} Edition):

Tran, Linh V. (Linh Vinh), 1981-. “Random matrices and random boxes.” 2011. Doctoral Dissertation, Rutgers University. Accessed October 24, 2020. http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000057700.

MLA Handbook (7^{th} Edition):

Tran, Linh V. (Linh Vinh), 1981-. “Random matrices and random boxes.” 2011. Web. 24 Oct 2020.

Vancouver:

Tran, Linh V. (Linh Vinh) 1. Random matrices and random boxes. [Internet] [Doctoral dissertation]. Rutgers University; 2011. [cited 2020 Oct 24]. Available from: http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000057700.

Council of Science Editors:

Tran, Linh V. (Linh Vinh) 1. Random matrices and random boxes. [Doctoral Dissertation]. Rutgers University; 2011. Available from: http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000057700

Rutgers University

3. Vijay, Sujith. Arithmetic progressions : combinatorial and number-theoretic perspectives.

Degree: PhD, Mathematics, 2007, Rutgers University

URL: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.13838

► A beautiful result in the study of arithmetic progressions modulo 1 is the three distance theorem, conjectured by Steinhaus and proved by Sós, Świerczkowski et…
(more)

Subjects/Keywords: Series; Arithmetic

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vijay, S. (2007). Arithmetic progressions : combinatorial and number-theoretic perspectives. (Doctoral Dissertation). Rutgers University. Retrieved from http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.13838

Chicago Manual of Style (16^{th} Edition):

Vijay, Sujith. “Arithmetic progressions : combinatorial and number-theoretic perspectives.” 2007. Doctoral Dissertation, Rutgers University. Accessed October 24, 2020. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.13838.

MLA Handbook (7^{th} Edition):

Vijay, Sujith. “Arithmetic progressions : combinatorial and number-theoretic perspectives.” 2007. Web. 24 Oct 2020.

Vancouver:

Vijay S. Arithmetic progressions : combinatorial and number-theoretic perspectives. [Internet] [Doctoral dissertation]. Rutgers University; 2007. [cited 2020 Oct 24]. Available from: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.13838.

Council of Science Editors:

Vijay S. Arithmetic progressions : combinatorial and number-theoretic perspectives. [Doctoral Dissertation]. Rutgers University; 2007. Available from: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.13838

Rutgers University

4. Levitt, Ian Marc, 1976. Some problems in extremal graph theory avoiding the use of the regularity lemma.

Degree: PhD, Mathematics, 2009, Rutgers University

URL: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000051368

►

In this thesis we present two results in Extremal Graph Theory. The first result is a new proof of a conjecture of Bollobas on embedding… (more)

Subjects/Keywords: Extremal problems (Mathematics); Graph theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Levitt, Ian Marc, 1. (2009). Some problems in extremal graph theory avoiding the use of the regularity lemma. (Doctoral Dissertation). Rutgers University. Retrieved from http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000051368

Chicago Manual of Style (16^{th} Edition):

Levitt, Ian Marc, 1976. “Some problems in extremal graph theory avoiding the use of the regularity lemma.” 2009. Doctoral Dissertation, Rutgers University. Accessed October 24, 2020. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000051368.

MLA Handbook (7^{th} Edition):

Levitt, Ian Marc, 1976. “Some problems in extremal graph theory avoiding the use of the regularity lemma.” 2009. Web. 24 Oct 2020.

Vancouver:

Levitt, Ian Marc 1. Some problems in extremal graph theory avoiding the use of the regularity lemma. [Internet] [Doctoral dissertation]. Rutgers University; 2009. [cited 2020 Oct 24]. Available from: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000051368.

Council of Science Editors:

Levitt, Ian Marc 1. Some problems in extremal graph theory avoiding the use of the regularity lemma. [Doctoral Dissertation]. Rutgers University; 2009. Available from: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000051368

Rutgers University

5. Nguyen, Hoi H., 1980-. Some applications of Freiman's inverse theorem.

Degree: PhD, Mathematics, 2010, Rutgers University

URL: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000053124

►

The celebrated Freiman's inverse theorem in Additive Combinatorics asserts that an additive set of small doubling constant must have additive structure. This thesis contains two… (more)

Subjects/Keywords: Additive combinatorics; Number theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nguyen, Hoi H., 1. (2010). Some applications of Freiman's inverse theorem. (Doctoral Dissertation). Rutgers University. Retrieved from http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000053124

Chicago Manual of Style (16^{th} Edition):

Nguyen, Hoi H., 1980-. “Some applications of Freiman's inverse theorem.” 2010. Doctoral Dissertation, Rutgers University. Accessed October 24, 2020. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000053124.

MLA Handbook (7^{th} Edition):

Nguyen, Hoi H., 1980-. “Some applications of Freiman's inverse theorem.” 2010. Web. 24 Oct 2020.

Vancouver:

Nguyen, Hoi H. 1. Some applications of Freiman's inverse theorem. [Internet] [Doctoral dissertation]. Rutgers University; 2010. [cited 2020 Oct 24]. Available from: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000053124.

Council of Science Editors:

Nguyen, Hoi H. 1. Some applications of Freiman's inverse theorem. [Doctoral Dissertation]. Rutgers University; 2010. Available from: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000053124

Rutgers University

6. Jamshed, Asif. Embedding spanning subgraphs into large dense graphs.

Degree: PhD, Computer Science, 2010, Rutgers University

URL: http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000056417

►

In this thesis we are going to present some results on embedding spanning subgraphs into large dense graphs. Spanning Trees Bollob'as conjectured that if G… (more)

Subjects/Keywords: Hamiltonian graph theory; Spanning trees (Graph theory); Embeddings (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jamshed, A. (2010). Embedding spanning subgraphs into large dense graphs. (Doctoral Dissertation). Rutgers University. Retrieved from http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000056417

Chicago Manual of Style (16^{th} Edition):

Jamshed, Asif. “Embedding spanning subgraphs into large dense graphs.” 2010. Doctoral Dissertation, Rutgers University. Accessed October 24, 2020. http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000056417.

MLA Handbook (7^{th} Edition):

Jamshed, Asif. “Embedding spanning subgraphs into large dense graphs.” 2010. Web. 24 Oct 2020.

Vancouver:

Jamshed A. Embedding spanning subgraphs into large dense graphs. [Internet] [Doctoral dissertation]. Rutgers University; 2010. [cited 2020 Oct 24]. Available from: http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000056417.

Council of Science Editors:

Jamshed A. Embedding spanning subgraphs into large dense graphs. [Doctoral Dissertation]. Rutgers University; 2010. Available from: http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000056417

Rutgers University

7. Ilinca, Liviu, 1980-. Asymptotic enumeration of 2- and 3-SAT functions.

Degree: PhD, Mathematics, 2010, Rutgers University

URL: http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000053609

►

We are interested in the number, G(k,n), of Boolean functions of n variables definable by k-SAT formulae. First, in Chapter 2, we give an alternate… (more)

Subjects/Keywords: Combinatorial analysis; Graph theory; Hypergraphs

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ilinca, Liviu, 1. (2010). Asymptotic enumeration of 2- and 3-SAT functions. (Doctoral Dissertation). Rutgers University. Retrieved from http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000053609

Chicago Manual of Style (16^{th} Edition):

Ilinca, Liviu, 1980-. “Asymptotic enumeration of 2- and 3-SAT functions.” 2010. Doctoral Dissertation, Rutgers University. Accessed October 24, 2020. http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000053609.

MLA Handbook (7^{th} Edition):

Ilinca, Liviu, 1980-. “Asymptotic enumeration of 2- and 3-SAT functions.” 2010. Web. 24 Oct 2020.

Vancouver:

Ilinca, Liviu 1. Asymptotic enumeration of 2- and 3-SAT functions. [Internet] [Doctoral dissertation]. Rutgers University; 2010. [cited 2020 Oct 24]. Available from: http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000053609.

Council of Science Editors:

Ilinca, Liviu 1. Asymptotic enumeration of 2- and 3-SAT functions. [Doctoral Dissertation]. Rutgers University; 2010. Available from: http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000053609

Rutgers University

8. Costello, Kevin, 1981-. Ranks of random matrices and graphs.

Degree: PhD, Mathematics, 2007, Rutgers University

URL: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.15810

►

Let Q_n be a random symmetric matrix whose entries on and above the main diagonal are independent random variables (e.g. the adjacency matrix of an… (more)

Subjects/Keywords: Random matrices; Random graphs; Graph theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Costello, Kevin, 1. (2007). Ranks of random matrices and graphs. (Doctoral Dissertation). Rutgers University. Retrieved from http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.15810

Chicago Manual of Style (16^{th} Edition):

Costello, Kevin, 1981-. “Ranks of random matrices and graphs.” 2007. Doctoral Dissertation, Rutgers University. Accessed October 24, 2020. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.15810.

MLA Handbook (7^{th} Edition):

Costello, Kevin, 1981-. “Ranks of random matrices and graphs.” 2007. Web. 24 Oct 2020.

Vancouver:

Costello, Kevin 1. Ranks of random matrices and graphs. [Internet] [Doctoral dissertation]. Rutgers University; 2007. [cited 2020 Oct 24]. Available from: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.15810.

Council of Science Editors:

Costello, Kevin 1. Ranks of random matrices and graphs. [Doctoral Dissertation]. Rutgers University; 2007. Available from: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.15810