Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:


Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"Rutgers University" +contributor:("Jadidian, B."). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

Rutgers University

1. Ngernchuklin, Piyalak, 1974-. PMN-PT piezoelectric-electrostrictive bi-layer composite actuators.

Degree: PhD, Materials Science and Engineering, 2010, Rutgers University

In the past few decades, significant advances have been achieved to replace the conventional actuators, including hydraulic, shape memory alloy, electromagnetic and linear induction, with piezoelectric actuators since they are light weight and small in size, have precision positioning capabilities, offer a wide range of generative force, consume less power, and provide higher durability and reliability. The strain produced by bulk polycrystalline piezoelectric ceramics and single crystals are typically in the range of 0.1 to 1 %, respectively, which is still low for many applications. Therefore, various strain amplification designs including multilayer, bimorph, unimorph, flextensional actuators (Moonie and cymbal), co-fired and functionally graded ceramics have been proposed to enhance the displacement. In this investigation, Piezoelectric/Electrostrictive Bi-Layer Monolithic Composites (PE-MBLC) were fabricated by co-pressing and co-sintering of the piezoelectric (PMN-PT 65/35: P) and electrostrictive (PMN/PT 90/10: E) powders. Flat and dome shaped of PE-MBLCs were obtained by optimizing processing conditions such as pressing pressure and sintering temperature. In addition, poling conditions of bilayer composite actuators were thoroughly studied to maximize their electromechanical properties. It was found that composites had lower d33eff and Keff values than the calculated values. This was attributed to a significant difference between relative permittivities of P and E materials as well as the presence of induced stresses in both P and E layers after sintering that hindered domain switching within piezoelectric layer during poling. The shape change (planar to dome), electromechanical properties, and actuation performance of PE-MBLC actuators were examined as a function of volume percent of piezoelectric phase. The highest displacement ~15 m was obtained from PE-MBLC actuator with 50 volume % piezoelectric phase due to the transverse strain response of piezoelectric and electrostrictive layers, the geometry of the composites, and the domain reorientation. Two designs of the flextensional actuators were also fabricated. In the first design, two truncated thin metal caps were attached to a flat PE-MBLC. In the second design, dome-shaped PE-MBLC actuators with various volume fraction of piezoelectric phase were attached to a flat metallic plate. The actuation evaluation showed that ~ 21 to 70 m displacement could be achieved by such designs.

Includes abstract

Advisors/Committee Members: Ngernchuklin, Piyalak, 1974- (author), Safari, Ahmad (chair), Danforth, S.C. (internal member), Klein, L.C. (internal member), Jadidian, B. (outside member).

Subjects/Keywords: Piezoelectric devices; Actuators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ngernchuklin, Piyalak, 1. (2010). PMN-PT piezoelectric-electrostrictive bi-layer composite actuators. (Doctoral Dissertation). Rutgers University. Retrieved from

Chicago Manual of Style (16th Edition):

Ngernchuklin, Piyalak, 1974-. “PMN-PT piezoelectric-electrostrictive bi-layer composite actuators.” 2010. Doctoral Dissertation, Rutgers University. Accessed July 20, 2019.

MLA Handbook (7th Edition):

Ngernchuklin, Piyalak, 1974-. “PMN-PT piezoelectric-electrostrictive bi-layer composite actuators.” 2010. Web. 20 Jul 2019.


Ngernchuklin, Piyalak 1. PMN-PT piezoelectric-electrostrictive bi-layer composite actuators. [Internet] [Doctoral dissertation]. Rutgers University; 2010. [cited 2019 Jul 20]. Available from:

Council of Science Editors:

Ngernchuklin, Piyalak 1. PMN-PT piezoelectric-electrostrictive bi-layer composite actuators. [Doctoral Dissertation]. Rutgers University; 2010. Available from: