Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `+publisher:"Princeton University" +contributor:("Klainerman, Sergiu")`

.
Showing records 1 – 5 of
5 total matches.

▼ Search Limiters

Princeton University

1. Stogin, John. Nonlinear Wave Dynamics in Black Hole Spacetimes .

Degree: PhD, 2017, Princeton University

URL: http://arks.princeton.edu/ark:/88435/dsp01p5547t983

► This thesis details a method for proving global boundedness and decay results for nonlinear wave equations on black hole spacetimes. The method is applied to…
(more)

Subjects/Keywords: black hole stability; general relativity; partial differential equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Stogin, J. (2017). Nonlinear Wave Dynamics in Black Hole Spacetimes . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01p5547t983

Chicago Manual of Style (16^{th} Edition):

Stogin, John. “Nonlinear Wave Dynamics in Black Hole Spacetimes .” 2017. Doctoral Dissertation, Princeton University. Accessed July 17, 2019. http://arks.princeton.edu/ark:/88435/dsp01p5547t983.

MLA Handbook (7^{th} Edition):

Stogin, John. “Nonlinear Wave Dynamics in Black Hole Spacetimes .” 2017. Web. 17 Jul 2019.

Vancouver:

Stogin J. Nonlinear Wave Dynamics in Black Hole Spacetimes . [Internet] [Doctoral dissertation]. Princeton University; 2017. [cited 2019 Jul 17]. Available from: http://arks.princeton.edu/ark:/88435/dsp01p5547t983.

Council of Science Editors:

Stogin J. Nonlinear Wave Dynamics in Black Hole Spacetimes . [Doctoral Dissertation]. Princeton University; 2017. Available from: http://arks.princeton.edu/ark:/88435/dsp01p5547t983

Princeton University

2. Granowski, Ross. Asymptotically Stable Ill-Posedness of Geometric Quasilinear Wave Equations .

Degree: PhD, 2018, Princeton University

URL: http://arks.princeton.edu/ark:/88435/dsp01k0698b20f

► It has been known since the work of Smith and Tataru in that quasilinear wave equations (g^{-1})^{\a\b}(Φ)\partial^{2}_{\a\b}Φ=\mathcal{N}(Φ,\partialΦ) are locally well-posed in H^{2+ε} × H^{1+ε}(ℝ^{3}). The sharpness…
(more)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Granowski, R. (2018). Asymptotically Stable Ill-Posedness of Geometric Quasilinear Wave Equations . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01k0698b20f

Chicago Manual of Style (16^{th} Edition):

Granowski, Ross. “Asymptotically Stable Ill-Posedness of Geometric Quasilinear Wave Equations .” 2018. Doctoral Dissertation, Princeton University. Accessed July 17, 2019. http://arks.princeton.edu/ark:/88435/dsp01k0698b20f.

MLA Handbook (7^{th} Edition):

Granowski, Ross. “Asymptotically Stable Ill-Posedness of Geometric Quasilinear Wave Equations .” 2018. Web. 17 Jul 2019.

Vancouver:

Granowski R. Asymptotically Stable Ill-Posedness of Geometric Quasilinear Wave Equations . [Internet] [Doctoral dissertation]. Princeton University; 2018. [cited 2019 Jul 17]. Available from: http://arks.princeton.edu/ark:/88435/dsp01k0698b20f.

Council of Science Editors:

Granowski R. Asymptotically Stable Ill-Posedness of Geometric Quasilinear Wave Equations . [Doctoral Dissertation]. Princeton University; 2018. Available from: http://arks.princeton.edu/ark:/88435/dsp01k0698b20f

3. An, Xinliang. Formation of Trapped Surfaces in General Relativity .

Degree: PhD, 2014, Princeton University

URL: http://arks.princeton.edu/ark:/88435/dsp01m900nt56d

► In this thesis we present two results regarding the formation of trapped surfaces in general relativity. The first is a simplified approach to Christodoulou's breakthrough…
(more)

Subjects/Keywords: Einstein's Equation; Gravitational Collapse; Short Pulse Method; Trapped Surface

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

An, X. (2014). Formation of Trapped Surfaces in General Relativity . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01m900nt56d

Chicago Manual of Style (16^{th} Edition):

An, Xinliang. “Formation of Trapped Surfaces in General Relativity .” 2014. Doctoral Dissertation, Princeton University. Accessed July 17, 2019. http://arks.princeton.edu/ark:/88435/dsp01m900nt56d.

MLA Handbook (7^{th} Edition):

An, Xinliang. “Formation of Trapped Surfaces in General Relativity .” 2014. Web. 17 Jul 2019.

Vancouver:

An X. Formation of Trapped Surfaces in General Relativity . [Internet] [Doctoral dissertation]. Princeton University; 2014. [cited 2019 Jul 17]. Available from: http://arks.princeton.edu/ark:/88435/dsp01m900nt56d.

Council of Science Editors:

An X. Formation of Trapped Surfaces in General Relativity . [Doctoral Dissertation]. Princeton University; 2014. Available from: http://arks.princeton.edu/ark:/88435/dsp01m900nt56d

4. Oh, Sung-Jin. Finite energy global well-posedness of the (3+1)-dimensional Yang-Mills equations using a novel Yang-Mill heat flow gauge .

Degree: PhD, 2013, Princeton University

URL: http://arks.princeton.edu/ark:/88435/dsp01kp78gg44w

► In this thesis, we propose a novel choice of gauge for the Yang-Mills equations on the Minkowski space ℝ^{1+d}. A crucial ingredient is the associated…
(more)

Subjects/Keywords: caloric gauge; Yang-Mills equations; Yang-Mills heat flow

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Oh, S. (2013). Finite energy global well-posedness of the (3+1)-dimensional Yang-Mills equations using a novel Yang-Mill heat flow gauge . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01kp78gg44w

Chicago Manual of Style (16^{th} Edition):

Oh, Sung-Jin. “Finite energy global well-posedness of the (3+1)-dimensional Yang-Mills equations using a novel Yang-Mill heat flow gauge .” 2013. Doctoral Dissertation, Princeton University. Accessed July 17, 2019. http://arks.princeton.edu/ark:/88435/dsp01kp78gg44w.

MLA Handbook (7^{th} Edition):

Oh, Sung-Jin. “Finite energy global well-posedness of the (3+1)-dimensional Yang-Mills equations using a novel Yang-Mill heat flow gauge .” 2013. Web. 17 Jul 2019.

Vancouver:

Oh S. Finite energy global well-posedness of the (3+1)-dimensional Yang-Mills equations using a novel Yang-Mill heat flow gauge . [Internet] [Doctoral dissertation]. Princeton University; 2013. [cited 2019 Jul 17]. Available from: http://arks.princeton.edu/ark:/88435/dsp01kp78gg44w.

Council of Science Editors:

Oh S. Finite energy global well-posedness of the (3+1)-dimensional Yang-Mills equations using a novel Yang-Mill heat flow gauge . [Doctoral Dissertation]. Princeton University; 2013. Available from: http://arks.princeton.edu/ark:/88435/dsp01kp78gg44w

5. Isett, Philip James. Hölder Continuous Euler Flows with Compact Support in Time .

Degree: PhD, 2013, Princeton University

URL: http://arks.princeton.edu/ark:/88435/dsp01jq085k04v

► Building on the recent work of C. De Lellis and L. Szekelyhidi, we construct global weak solutions to the three-dimensional incompressible Euler equations which are…
(more)

Subjects/Keywords: convex integration; euler equations; fluid mechanics; onsager's conjecture; partial differential equations; turbulence

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Isett, P. J. (2013). Hölder Continuous Euler Flows with Compact Support in Time . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01jq085k04v

Chicago Manual of Style (16^{th} Edition):

Isett, Philip James. “Hölder Continuous Euler Flows with Compact Support in Time .” 2013. Doctoral Dissertation, Princeton University. Accessed July 17, 2019. http://arks.princeton.edu/ark:/88435/dsp01jq085k04v.

MLA Handbook (7^{th} Edition):

Isett, Philip James. “Hölder Continuous Euler Flows with Compact Support in Time .” 2013. Web. 17 Jul 2019.

Vancouver:

Isett PJ. Hölder Continuous Euler Flows with Compact Support in Time . [Internet] [Doctoral dissertation]. Princeton University; 2013. [cited 2019 Jul 17]. Available from: http://arks.princeton.edu/ark:/88435/dsp01jq085k04v.

Council of Science Editors:

Isett PJ. Hölder Continuous Euler Flows with Compact Support in Time . [Doctoral Dissertation]. Princeton University; 2013. Available from: http://arks.princeton.edu/ark:/88435/dsp01jq085k04v