Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:


Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"Oregon State University" +contributor:("Graham, Matthew"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

Oregon State University

1. Lee, Byounghwak. Nonlinear Terahertz Spectroscopy and imaging of Carbon Nanomaterials.

Degree: PhD, Physics, 2016, Oregon State University

This dissertation presents nonlinear terahertz (THz) properties of carbon nanomaterials investigated by time-resolved high-field THz spectroscopy. In order to determine THz characteristics of nanomaterials, we performed THz power spectrum measurement, THz raster imaging, THz time-domain spectroscopy (THz-TDS) and time-resolved pump-probe experiment on two different types of single layer graphene and a free standing multi-walled carbon nanotubes (MWCNTs), utilizing strong single-cycle THz pulses (central frequency, 0.9 THz; bandwidth, 1 THz; THz field amplitude, E_THz>1 MV/cm) generated by optical rectification (a second order nonlinear optical process) of femtosecond laser pulses (pulse energy, 1 mJ; pulse duration, 100 fs; repetition rate, 1 kHz) with titled pulse front for phase matching between optical and THz pulses in LiNbO₃ crystal. Strong and broadband THz pulses induce transparency single layer graphene grown by catalytic chemical vapor deposition (CVD). A substrate-free homogeneous graphene becomes more transparent to the THz radiation than an inhomogeneous graphene on silicon as the peak strength of THz field increases over 50kV/cm considered as the threshold of the nonlinear transparency effect. The experimental results show that suspended graphene is more efficient to manipulate THz signal than one with a substrate. Free-standing MWCNTs drawn from a forest of MWCNTs synthesized by CVD exhibit highly anisotropic linear and nonlinear THz responses. There are no nonlinear effects for the polarization perpendicular to the MWCNT axis, whereas, in the parallel polarization configuration, intense THz pulses induce nonlinear absorption in the quasi-one-dimensional conducting media. That is, it is revealed via time-resolved measurements of transmitted THz pulses and a theoretical analysis of the data that strong THz fields enhance permittivity in carbon nanotubes by generating charge carriers. Optical-Pump/THz-probe (OPTP) spectroscopy shows that optical pump pulses induce interband transitions in MWCNTs: Its conductivity is increased by generating photo-excited hot-carriers as the optical pump energy increases. On the other hand, Optical-Pump/Intense THz-Pump spectroscopy (OPITP) exhibits three carrier dynamics phenomena which are optical pump-induced absorption, THz field-induced absorption and transparency in MWCNTs: Intense THz and optical pump energies (E_THz<538kV/cm and I_opt=103μJ/cm²) give rise to photo-excited hot-carriers and THz field induced-carrier density via band to band transitions, however, sub-band scattering dominant in the THz-field range between 538 to 653kV/cm leads to increased effective mass, which reduces carrier mobility. Advisors/Committee Members: Lee, Yun-Shik (advisor), Graham, Matthew (committee member).

Subjects/Keywords: Nonlinear Terahertz Spectroscopy; Terahertz spectroscopy

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lee, B. (2016). Nonlinear Terahertz Spectroscopy and imaging of Carbon Nanomaterials. (Doctoral Dissertation). Oregon State University. Retrieved from

Chicago Manual of Style (16th Edition):

Lee, Byounghwak. “Nonlinear Terahertz Spectroscopy and imaging of Carbon Nanomaterials.” 2016. Doctoral Dissertation, Oregon State University. Accessed November 14, 2019.

MLA Handbook (7th Edition):

Lee, Byounghwak. “Nonlinear Terahertz Spectroscopy and imaging of Carbon Nanomaterials.” 2016. Web. 14 Nov 2019.


Lee B. Nonlinear Terahertz Spectroscopy and imaging of Carbon Nanomaterials. [Internet] [Doctoral dissertation]. Oregon State University; 2016. [cited 2019 Nov 14]. Available from:

Council of Science Editors:

Lee B. Nonlinear Terahertz Spectroscopy and imaging of Carbon Nanomaterials. [Doctoral Dissertation]. Oregon State University; 2016. Available from: