Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"Oregon State University" +contributor:("Bergman, Lawrence"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Oregon State University

1. Bao, Xinlong. Applying machine learning for prediction, recommendation, and integration.

Degree: PhD, Computer Science, 2009, Oregon State University

This dissertation explores the idea of applying machine learning technologies to help computer users find information and better organize electronic resources, by presenting the research work conducted in the following three applications: FolderPredictor, Stacking Recommendation Engines, and Integrating Learning and Reasoning. FolderPredictor is an intelligent desktop software tool that helps the user quickly locate files on the computer. It predicts the file folder that the user will access next by applying machine learning algorithms to the user's file access history. The predicted folders are presented in existing Windows GUIs, so that the user's cost for learning new interactions is minimized. Multiple prediction algorithms are introduced and their performance is examined in two user studies. Recommender systems are one of the most popular means of assisting internet users in finding useful online information. The second part of this dissertation presents a novel way of building hybrid recommender systems by applying the idea of Stacking from ensemble learning. Properties of the input users/items, called runtime metrics, are employed as additional meta features to improve performance. The resulting system, called STREAM, outperforms each component engine and a static linear hybrid system in a movie recommendation problem. Many desktop assistant systems help users better organize their electronic resources by incorporating machine learning components (e.g., classifiers) to make intelligent predictions. The last part of this dissertation addresses the problem of how to improve the performance of these learning components, by integrating learning and reasoning through Markov logic. Through an inference engine called the PCE, multiple classifiers are integrated via a process called relational co-training that improves the performance of each classifier based on information propagated from other classifiers. Advisors/Committee Members: Dietterich, Thomas G. (advisor), Bergman, Lawrence (committee member).

Subjects/Keywords: machine learning; Machine learning

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bao, X. (2009). Applying machine learning for prediction, recommendation, and integration. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/12549

Chicago Manual of Style (16th Edition):

Bao, Xinlong. “Applying machine learning for prediction, recommendation, and integration.” 2009. Doctoral Dissertation, Oregon State University. Accessed April 24, 2019. http://hdl.handle.net/1957/12549.

MLA Handbook (7th Edition):

Bao, Xinlong. “Applying machine learning for prediction, recommendation, and integration.” 2009. Web. 24 Apr 2019.

Vancouver:

Bao X. Applying machine learning for prediction, recommendation, and integration. [Internet] [Doctoral dissertation]. Oregon State University; 2009. [cited 2019 Apr 24]. Available from: http://hdl.handle.net/1957/12549.

Council of Science Editors:

Bao X. Applying machine learning for prediction, recommendation, and integration. [Doctoral Dissertation]. Oregon State University; 2009. Available from: http://hdl.handle.net/1957/12549

.