Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"NSYSU" +contributor:("S. R. Jian"). Showing records 1 – 2 of 2 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


NSYSU

1. Sung, Ta-hao. Mechanical and Optoelectronic Response of Wide Band Gap Semiconductors under Low Dimensional Stress.

Degree: PhD, Materials and Optoelectronic Science, 2012, NSYSU

Wide band gap semiconductors ZnO/GaN attracted a great deal of interests for decade, due to their wide direct band, high electron binding energy, excellent chemical and thermal stability, good heat conductivity and capability, high electron mobility and transparent properties at room temperature. They have many potential applications such as laser, biosensor, piezoelectric power generator, nano-electromechanical systems and flat panel field emission displays. However, unexpected contact loading during processing or packaging may induce residual stresses and/or an increase in defect concentration in ZnO/GaN wafer or thin film, causing possible degenerated reliability and efficient operation of the piezoelectric and photonic device. To ensure and improve the performance of devices based on ZnO/GaN, a better understanding of the mechanical/optoelectronic response under different processing and loading conditions and even the measuring methods are necessary. In this thesis, our aim is to reveal a comprehensive investigation of the mechanical responses on polar/non-polar GaN/ZnO single crystal under low dimensional stress. We try to provide the fundamental theoretical and experimental studies for further application and researches, such as tension testing, residual stress, low temperature cathodoluminescence and Raman spectroscopy analysis. In this study, the theoretical Youngâs modulus and Poisson ratio of ZnO/GaN are extracted from elastic constants for comparison and further estimation. The nano-scaled mechanical properties, such as Youngâs modulus, hardness and yield stress, are identified by using the nanoindentation system. The experimental values were fitting by the Hertzian contact theory. The results are in good agreement with the theoretical predictions. No significant strain rate influence is observed over the strain rate from 1x10-2 s-1 to 1x10-4 s-1. The comparisons of mechanical properties between the polar and non-polar planes of ZnO are firstly examined. The results reveal that the non-polar planes are softer than the polar plane. Both a-plane and m-plane ZnO have lower hardness and yield stress than c-plane ZnO. The microstructure and deformation mechanism are analyzed by using X-TEM and SEM. No pop-out or slope changing was found in their load-displacement curves, suggesting no phase transformation, twining or crack domain deformation occurred under microcompression and nanoindentation testing. Taking all considerations for the higher resulting Schmid factor and lower Burgersâ vector, the most possible slip system for c-plane hexagonal structures is the pyramidal plane. The a-plane has shorter burgerâs vector on the slip plane which leads the lower yield stress than c-plane. To erase the effect of FIB induced Ga ion implantation, the c-plane ZnO was annealed at 900 °C for 1 hour. We found that the yield stress under microcompression decreases and the intensity of the cathodoluminescence spectrum increases after the annealing process. This result indicates that the thermal treatment is a good way to refine… Advisors/Committee Members: M. C. Chou (chair), J. C. Huang (committee member), P. W. Kao (chair), J. H. Hsu (chair), S. R. Jian (chair).

Subjects/Keywords: ZnO; GaN; Nanoindentation; CL; Raman; FIB

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sung, T. (2012). Mechanical and Optoelectronic Response of Wide Band Gap Semiconductors under Low Dimensional Stress. (Doctoral Dissertation). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-1224112-202034

Chicago Manual of Style (16th Edition):

Sung, Ta-hao. “Mechanical and Optoelectronic Response of Wide Band Gap Semiconductors under Low Dimensional Stress.” 2012. Doctoral Dissertation, NSYSU. Accessed May 22, 2019. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-1224112-202034.

MLA Handbook (7th Edition):

Sung, Ta-hao. “Mechanical and Optoelectronic Response of Wide Band Gap Semiconductors under Low Dimensional Stress.” 2012. Web. 22 May 2019.

Vancouver:

Sung T. Mechanical and Optoelectronic Response of Wide Band Gap Semiconductors under Low Dimensional Stress. [Internet] [Doctoral dissertation]. NSYSU; 2012. [cited 2019 May 22]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-1224112-202034.

Council of Science Editors:

Sung T. Mechanical and Optoelectronic Response of Wide Band Gap Semiconductors under Low Dimensional Stress. [Doctoral Dissertation]. NSYSU; 2012. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-1224112-202034


NSYSU

2. Pei, Hao-Jan. Tensile Response of Amorphous/Nanocrystalline ZrCu/Cu Multilayered Thin Films.

Degree: PhD, Materials and Optoelectronic Science, 2012, NSYSU

In this research, the amorphous/nanocrystalline ZrCu/Cu multilayered thin films with various conditions such as individual layer thickness, total layer thickness, and interface type have been successfully fabricated by the multi-gun sputtering processes. To investigate the mechanical properties and deformation behaviors of substrate-supported ZrCu/Cu multilayered thin films, these films deposited on the Cu or polyimide foils were prepared for tensile testing. Firstly, the tensile behaviors of the monolithic ZrCu thin film metallic glass and the ZrCu/Cu multilayered thin films deposited on the pure Cu foils are systematically examined. The extracted tensile modulus and strength of the 1-μm-thick multilayered thin films are in good agreement with the theoretical iso-strain rule of mixture prediction. The extracted 2-μm-thick multilayered film data are lower, but can be corrected back by considering the actual intact cross-sectional area during the tensile loading. Moreover, the current results reveal that the ZrCu/Cu multilayered coating exhibit much better tensile performance than the monolithic ZrCu coating. It indicates that the amorphous/nanocrystalline multilayered thin film structure can certainly enhance the mechanical properties of monolithic thin film metallic glasses under tension. Secondly, for the further investigation of tensile response, the polyimide-supported amorphous/nanocrystalline ZrCu/Cu multilayered thin films with various individual layer thicknesses from 10 to 100 nm were prepared. The relatively soft, smooth, and flexible polyimide foils as the substrates in this experiment can undergo sufficient deformation under In this research, the amorphous/nanocrystalline ZrCu/Cu multilayered thin films with various conditions such as individual layer thickness, total layer thickness, and interface type have been successfully fabricated by the multi-gun sputtering processes. To investigate the mechanical properties and deformation behaviors of substrate-supported ZrCu/Cu multilayered thin films, these films deposited on the Cu or polyimide foils were prepared for tensile testing. Firstly, the tensile behaviors of the monolithic ZrCu thin film metallic glass and the ZrCu/Cu multilayered thin films deposited on the pure Cu foils are systematically examined. The extracted tensile modulus and strength of the 1-μm-thick multilayered thin films are in good agreement with the theoretical iso-strain rule of mixture prediction. The extracted 2-μm-thick multilayered film data are lower, but can be corrected back by considering the actual intact cross-sectional area during the tensile loading. Moreover, the current results reveal that the ZrCu/Cu multilayered coating exhibit much better tensile performance than the monolithic ZrCu coating. It indicates that the amorphous/nanocrystalline multilayered thin film structure can certainly enhance the mechanical properties of monolithic thin film metallic glasses under tension. Secondly, for the further investigation of tensile response, the polyimide-supported… Advisors/Committee Members: L. W. Chang (chair), J. C. Huang (committee member), P. W. Kao (chair), K. C. Hsieh (chair), S. R. Jian (chair).

Subjects/Keywords: tensile testing; sputtering processes; multilayered thin films; nanocrystalline; amorphous; rule of mixtures; graded interfaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pei, H. (2012). Tensile Response of Amorphous/Nanocrystalline ZrCu/Cu Multilayered Thin Films. (Doctoral Dissertation). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0611112-081034

Chicago Manual of Style (16th Edition):

Pei, Hao-Jan. “Tensile Response of Amorphous/Nanocrystalline ZrCu/Cu Multilayered Thin Films.” 2012. Doctoral Dissertation, NSYSU. Accessed May 22, 2019. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0611112-081034.

MLA Handbook (7th Edition):

Pei, Hao-Jan. “Tensile Response of Amorphous/Nanocrystalline ZrCu/Cu Multilayered Thin Films.” 2012. Web. 22 May 2019.

Vancouver:

Pei H. Tensile Response of Amorphous/Nanocrystalline ZrCu/Cu Multilayered Thin Films. [Internet] [Doctoral dissertation]. NSYSU; 2012. [cited 2019 May 22]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0611112-081034.

Council of Science Editors:

Pei H. Tensile Response of Amorphous/Nanocrystalline ZrCu/Cu Multilayered Thin Films. [Doctoral Dissertation]. NSYSU; 2012. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0611112-081034

.