Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"Montana State University" +contributor:("Shefah Qazi, Masaki Uchida, Gregory J. Bedwell, Ben LaFrance, Peter E. Prevelige, Jr, and Trevor Douglas were co-authors of the article, \'Using the interior cavity of the P22 capsid for site-specific initiation of atom transfer radical polymerization with high density cargo loading\' in the journal \'Nature chemistry\' which is contained within this thesis."). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Lucon, Janice Elizabeth. Development of protein nanoparticle based composite materials.

Degree: PhD, College of Letters & Science, 2013, Montana State University

Inspired by the core-shell composite structures found in nature, a range of protein based composites have been developed. These materials were made using synthetic approaches, which utilized the native protein architecture as an initiation point and size constrained reaction vessel for the piecewise formation of the second material. In the first illustration of this approach, a protein-P t composite was formed, where the protein cage has been modified to include a metal binding moiety for improved synthesis of metallic P t nanoclusters, which were shown to be an active H 2 catalyst. This composite was analyzed by native mass spectrometry to determine the number of P t ions bound prior to mineralization and to measure the distribution of species after mineralization, which provided a unique view into the mineralization process. The second illustration was a material synthesized using the cage-like protein architecture as an internal guiding synthetic scaffold for the formation of a coordination polymer core inside the protein cage. The construction of this coordination polymer was unusual in that unlike normal coordination polymer synthesis, coordination of the metal preceded formation the ditopic ligands, which were afterwards completed using azide-alkyne click chemistry. Finally, a collection of protein-polymer composites were developed, which utilized a living radical polymerization method, atom transfer radical polymerization, to form internal polymer cores. By labeling one of these protein-polymer constructs with a Gd based MRI contrast agent a material with vastly improved relaxivity was made. The development of each of these three types of composites served to improve our understanding of the natural systems, from which they are derived, and provide a basis for further development of advanced multicomponent nanomaterials. Advisors/Committee Members: Chairperson, Graduate Committee: Trevor Douglas (advisor), Md Joynal Abedin, Masaki Uchida, Lars Liepold, Craig C. Jolley, Mark Young, and Trevor Douglas were co-authors of the article, 'A click chemistry based coordination polymer inside small heat shock protein' in the journal 'Chemical communications' which is contained within this thesis. (other), Shefah Qazi, Masaki Uchida, Gregory J. Bedwell, Ben LaFrance, Peter E. Prevelige, Jr, and Trevor Douglas were co-authors of the article, 'Using the interior cavity of the P22 capsid for site-specific initiation of atom transfer radical polymerization with high density cargo loading' in the journal 'Nature chemistry' which is contained within this thesis. (other).

Subjects/Keywords: Proteins.; Nanoparticles.; Composite materials.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lucon, J. E. (2013). Development of protein nanoparticle based composite materials. (Doctoral Dissertation). Montana State University. Retrieved from https://scholarworks.montana.edu/xmlui/handle/1/1758

Chicago Manual of Style (16th Edition):

Lucon, Janice Elizabeth. “Development of protein nanoparticle based composite materials.” 2013. Doctoral Dissertation, Montana State University. Accessed August 08, 2020. https://scholarworks.montana.edu/xmlui/handle/1/1758.

MLA Handbook (7th Edition):

Lucon, Janice Elizabeth. “Development of protein nanoparticle based composite materials.” 2013. Web. 08 Aug 2020.

Vancouver:

Lucon JE. Development of protein nanoparticle based composite materials. [Internet] [Doctoral dissertation]. Montana State University; 2013. [cited 2020 Aug 08]. Available from: https://scholarworks.montana.edu/xmlui/handle/1/1758.

Council of Science Editors:

Lucon JE. Development of protein nanoparticle based composite materials. [Doctoral Dissertation]. Montana State University; 2013. Available from: https://scholarworks.montana.edu/xmlui/handle/1/1758

.