Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"IUPUI" +contributor:("Das, Chittaranjan"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Lin, Yu-Hung. Probing cellular mechano-sensitivity using biomembrane-mimicking cell substrates of adjustable stiffness.

Degree: 2015, IUPUI

Indiana University-Purdue University Indianapolis (IUPUI)

It is increasingly recognized that mechanical properties of substrates play a pivotal role in the regulation of cellular fate and function. However, the underlying mechanisms of cellular mechanosensing still remain a topic of open debate. Traditionally, advancements in this field have been made using polymeric substrates of adjustable stiffness with immobilized linkers. While such substrates are well suited to examine cell adhesion and migration in an extracellular matrix environment, they are limited in their ability to replicate the rich dynamics found at cell-cell interfaces. To address this challenge, we recently introduced a linker-functionalized polymer-tethered multi-bilayer stack, in which substrate stiffness can be altered by the degree of bilayer stacking, thus allowing the analysis of cellular mechanosensitivity. Here, we apply this novel biomembrane-mimicking cell substrate design to explore the mechanosensitivity of C2C12 myoblasts in the presence of cell-cell-mimicking N-cadherin linkers. Experiments are presented, which demonstrate a relationship between the degree of bilayer stacking and mechanoresponse of plated cells, such as morphology, cytoskeletal organization, cellular traction forces, and migration speed. Furthermore, we illustrate the dynamic assembly of bilayer-bound N-cadherin linkers underneath cellular adherens junctions. In addition, properties of individual and clustered N-cadherins are examined in the polymer-tethered bilayer system in the absence of plated cells. Alternatively, substrate stiffness can be adjusted by the concentration of lipopolymers in a single polymer-tethered lipid bilayer. On the basis of this alternative cell substrate concept, we also discuss recent results on a linker-functionalized single polymer-tethered bilayer substrate with a lateral gradient in lipopolymer concentration (substrate viscoelasticity). Specifically, we show that the lipopolymer gradient has a notable impact on spreading, cytoskeletal organization, and motility of 3T3 fibroblasts. Two cases are discussed: 1. polymer-tethered bilayers with a sharp boundary between low and high lipopolymer concentration regions and 2. polymer-tethered bilayers with a gradual gradient in lipopolymer concentration.

Advisors/Committee Members: Naumann, Christoph A., Das, Chittaranjan, Thompson, David, Long, Eric C..

Subjects/Keywords: Artificial Substrate; Cadherin; Polymer-tethered Bilayer; Biomembrane-mimicking; Lipid Bilayer; Cadherins  – Research; Cell junctions  – Research; Polymers  – Surfaces; Bilayer lipid membranes  – Research; Cell adhesion  – Research  – Analysis; Biological interfaces  – Research  – Analysis; Cellular control mechanisms  – Research; Cells  – Mechanical properties  – Research; Polymers  – Rheology; Artificial cells  – Research

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lin, Y. (2015). Probing cellular mechano-sensitivity using biomembrane-mimicking cell substrates of adjustable stiffness. (Thesis). IUPUI. Retrieved from http://hdl.handle.net/1805/9965

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lin, Yu-Hung. “Probing cellular mechano-sensitivity using biomembrane-mimicking cell substrates of adjustable stiffness.” 2015. Thesis, IUPUI. Accessed April 10, 2021. http://hdl.handle.net/1805/9965.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lin, Yu-Hung. “Probing cellular mechano-sensitivity using biomembrane-mimicking cell substrates of adjustable stiffness.” 2015. Web. 10 Apr 2021.

Vancouver:

Lin Y. Probing cellular mechano-sensitivity using biomembrane-mimicking cell substrates of adjustable stiffness. [Internet] [Thesis]. IUPUI; 2015. [cited 2021 Apr 10]. Available from: http://hdl.handle.net/1805/9965.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lin Y. Probing cellular mechano-sensitivity using biomembrane-mimicking cell substrates of adjustable stiffness. [Thesis]. IUPUI; 2015. Available from: http://hdl.handle.net/1805/9965

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.