Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `+publisher:"Harvard University" +contributor:("Harris, Joseph D.")`

.
Showing records 1 – 6 of
6 total matches.

▼ Search Limiters

Harvard University

1. Huizenga, Jack. Restrictions of Steiner Bundles and Divisors on the Hilbert Scheme of Points in the Plane.

Degree: PhD, Mathematics, 2012, Harvard University

URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:9571108

►

The Hilbert scheme of (n) points in the projective plane parameterizes degree (n) zero-dimensional subschemes of the projective plane. We examine the dual cones of… (more)

Subjects/Keywords: Hilbert scheme; mathematics; projective plane; stability; vector bundles

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Huizenga, J. (2012). Restrictions of Steiner Bundles and Divisors on the Hilbert Scheme of Points in the Plane. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:9571108

Chicago Manual of Style (16^{th} Edition):

Huizenga, Jack. “Restrictions of Steiner Bundles and Divisors on the Hilbert Scheme of Points in the Plane.” 2012. Doctoral Dissertation, Harvard University. Accessed November 14, 2019. http://nrs.harvard.edu/urn-3:HUL.InstRepos:9571108.

MLA Handbook (7^{th} Edition):

Huizenga, Jack. “Restrictions of Steiner Bundles and Divisors on the Hilbert Scheme of Points in the Plane.” 2012. Web. 14 Nov 2019.

Vancouver:

Huizenga J. Restrictions of Steiner Bundles and Divisors on the Hilbert Scheme of Points in the Plane. [Internet] [Doctoral dissertation]. Harvard University; 2012. [cited 2019 Nov 14]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:9571108.

Council of Science Editors:

Huizenga J. Restrictions of Steiner Bundles and Divisors on the Hilbert Scheme of Points in the Plane. [Doctoral Dissertation]. Harvard University; 2012. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:9571108

Harvard University

2. Deopurkar, Anand. Alternate Compactifications of Hurwitz Spaces.

Degree: PhD, Mathematics, 2012, Harvard University

URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10086270

►

We construct several modular compactifications of the Hurwitz space (H^{d}_{g/h}) of genus g curves expressed as *d*-sheeted, simply branched covers of genus h curves. They…
(more)

Subjects/Keywords: Hurwitz space; Maroni; mathematics; birational geometry; trigonal curve; moduli space

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Deopurkar, A. (2012). Alternate Compactifications of Hurwitz Spaces. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:10086270

Chicago Manual of Style (16^{th} Edition):

Deopurkar, Anand. “Alternate Compactifications of Hurwitz Spaces.” 2012. Doctoral Dissertation, Harvard University. Accessed November 14, 2019. http://nrs.harvard.edu/urn-3:HUL.InstRepos:10086270.

MLA Handbook (7^{th} Edition):

Deopurkar, Anand. “Alternate Compactifications of Hurwitz Spaces.” 2012. Web. 14 Nov 2019.

Vancouver:

Deopurkar A. Alternate Compactifications of Hurwitz Spaces. [Internet] [Doctoral dissertation]. Harvard University; 2012. [cited 2019 Nov 14]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10086270.

Council of Science Editors:

Deopurkar A. Alternate Compactifications of Hurwitz Spaces. [Doctoral Dissertation]. Harvard University; 2012. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10086270

Harvard University

3. Patel, Anand Pankaj. The Geometry of Hurwitz Space.

Degree: PhD, Mathematics, 2013, Harvard University

URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11124835

►

We explore the geometry of certain special subvarieties of spaces of branched covers which we call the Maroni and Casnati-Ekedahl loci. Our goal is to… (more)

Subjects/Keywords: Mathematics; d-gonal; Hurwitz

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Patel, A. P. (2013). The Geometry of Hurwitz Space. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:11124835

Chicago Manual of Style (16^{th} Edition):

Patel, Anand Pankaj. “The Geometry of Hurwitz Space.” 2013. Doctoral Dissertation, Harvard University. Accessed November 14, 2019. http://nrs.harvard.edu/urn-3:HUL.InstRepos:11124835.

MLA Handbook (7^{th} Edition):

Patel, Anand Pankaj. “The Geometry of Hurwitz Space.” 2013. Web. 14 Nov 2019.

Vancouver:

Patel AP. The Geometry of Hurwitz Space. [Internet] [Doctoral dissertation]. Harvard University; 2013. [cited 2019 Nov 14]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11124835.

Council of Science Editors:

Patel AP. The Geometry of Hurwitz Space. [Doctoral Dissertation]. Harvard University; 2013. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11124835

Harvard University

4. Pflueger, Nathan K. Regeneration of Elliptic Chains with Exceptional Linear Series.

Degree: PhD, Mathematics, 2014, Harvard University

URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274140

►

We study two dimension estimates regarding linear series on algebraic curves. First, we generalize the classical Brill-Noether theorem to many cases where the Brill-Noether number… (more)

Subjects/Keywords: Mathematics; algebraic curves; algebraic geometry; Brill-Noether theory; numerical semigroups; Weierstrass points

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pflueger, N. K. (2014). Regeneration of Elliptic Chains with Exceptional Linear Series. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274140

Chicago Manual of Style (16^{th} Edition):

Pflueger, Nathan K. “Regeneration of Elliptic Chains with Exceptional Linear Series.” 2014. Doctoral Dissertation, Harvard University. Accessed November 14, 2019. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274140.

MLA Handbook (7^{th} Edition):

Pflueger, Nathan K. “Regeneration of Elliptic Chains with Exceptional Linear Series.” 2014. Web. 14 Nov 2019.

Vancouver:

Pflueger NK. Regeneration of Elliptic Chains with Exceptional Linear Series. [Internet] [Doctoral dissertation]. Harvard University; 2014. [cited 2019 Nov 14]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274140.

Council of Science Editors:

Pflueger NK. Regeneration of Elliptic Chains with Exceptional Linear Series. [Doctoral Dissertation]. Harvard University; 2014. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274140

Harvard University

5. Zahariuc, Adrian Ioan. Degenerations, Log K3 Pairs and Low Genus Curves on Algebraic Varieties.

Degree: PhD, 2016, Harvard University

URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493440

We investigate several questions pertaining to the enumerative and deformation-theoretic behavior of low-genus curves on algebraic varieties, using specialization techniques.

Mathematics

Subjects/Keywords: Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zahariuc, A. I. (2016). Degenerations, Log K3 Pairs and Low Genus Curves on Algebraic Varieties. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493440

Chicago Manual of Style (16^{th} Edition):

Zahariuc, Adrian Ioan. “Degenerations, Log K3 Pairs and Low Genus Curves on Algebraic Varieties.” 2016. Doctoral Dissertation, Harvard University. Accessed November 14, 2019. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493440.

MLA Handbook (7^{th} Edition):

Zahariuc, Adrian Ioan. “Degenerations, Log K3 Pairs and Low Genus Curves on Algebraic Varieties.” 2016. Web. 14 Nov 2019.

Vancouver:

Zahariuc AI. Degenerations, Log K3 Pairs and Low Genus Curves on Algebraic Varieties. [Internet] [Doctoral dissertation]. Harvard University; 2016. [cited 2019 Nov 14]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493440.

Council of Science Editors:

Zahariuc AI. Degenerations, Log K3 Pairs and Low Genus Curves on Algebraic Varieties. [Doctoral Dissertation]. Harvard University; 2016. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493440

6. Woolf, Matthew Jacob. Relative Jacobians of Linear Systems.

Degree: PhD, Mathematics, 2014, Harvard University

URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274184

►

Let X be a smooth projective variety. Given any basepoint-free linear system, |*D*|, there is a dense open subset parametrizing smooth divisors, and over that…
(more)

Subjects/Keywords: Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Woolf, M. J. (2014). Relative Jacobians of Linear Systems. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274184

Chicago Manual of Style (16^{th} Edition):

Woolf, Matthew Jacob. “Relative Jacobians of Linear Systems.” 2014. Doctoral Dissertation, Harvard University. Accessed November 14, 2019. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274184.

MLA Handbook (7^{th} Edition):

Woolf, Matthew Jacob. “Relative Jacobians of Linear Systems.” 2014. Web. 14 Nov 2019.

Vancouver:

Woolf MJ. Relative Jacobians of Linear Systems. [Internet] [Doctoral dissertation]. Harvard University; 2014. [cited 2019 Nov 14]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274184.

Council of Science Editors:

Woolf MJ. Relative Jacobians of Linear Systems. [Doctoral Dissertation]. Harvard University; 2014. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274184