Advanced search options
You searched for +publisher:"Harvard University" +contributor:("Gaitsgory, Dennis")
.
Showing records 1 – 6 of
6 total matches.
▼ Search Limiters
1. Campbell, Christopher Justin. Nearby Cycles of Whittaker Sheaves.
Degree: PhD, 2018, Harvard University
URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:40050118
Subjects/Keywords: Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Campbell, C. J. (2018). Nearby Cycles of Whittaker Sheaves. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:40050118
Chicago Manual of Style (16th Edition):
Campbell, Christopher Justin. “Nearby Cycles of Whittaker Sheaves.” 2018. Doctoral Dissertation, Harvard University. Accessed March 01, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:40050118.
MLA Handbook (7th Edition):
Campbell, Christopher Justin. “Nearby Cycles of Whittaker Sheaves.” 2018. Web. 01 Mar 2021.
Vancouver:
Campbell CJ. Nearby Cycles of Whittaker Sheaves. [Internet] [Doctoral dissertation]. Harvard University; 2018. [cited 2021 Mar 01]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:40050118.
Council of Science Editors:
Campbell CJ. Nearby Cycles of Whittaker Sheaves. [Doctoral Dissertation]. Harvard University; 2018. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:40050118
Harvard University
2. Barlev, Jonathan. D-Modules on Spaces of Rational Maps and on Other Generic Data.
Degree: PhD, Mathematics, 2012, Harvard University
URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540
Subjects/Keywords: D-modules; generic data; mathematics; geometric Langlands; homologically contractible
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Barlev, J. (2012). D-Modules on Spaces of Rational Maps and on Other Generic Data. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540
Chicago Manual of Style (16th Edition):
Barlev, Jonathan. “D-Modules on Spaces of Rational Maps and on Other Generic Data.” 2012. Doctoral Dissertation, Harvard University. Accessed March 01, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540.
MLA Handbook (7th Edition):
Barlev, Jonathan. “D-Modules on Spaces of Rational Maps and on Other Generic Data.” 2012. Web. 01 Mar 2021.
Vancouver:
Barlev J. D-Modules on Spaces of Rational Maps and on Other Generic Data. [Internet] [Doctoral dissertation]. Harvard University; 2012. [cited 2021 Mar 01]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540.
Council of Science Editors:
Barlev J. D-Modules on Spaces of Rational Maps and on Other Generic Data. [Doctoral Dissertation]. Harvard University; 2012. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540
Harvard University
3. Raskin, Samuel David. Chiral Principal Series Categories.
Degree: PhD, Mathematics, 2014, Harvard University
URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305
Subjects/Keywords: Mathematics; Algebra; Algebraic geometry; Automorphic forms; Geometric Langlands; Representation theory
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Raskin, S. D. (2014). Chiral Principal Series Categories. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305
Chicago Manual of Style (16th Edition):
Raskin, Samuel David. “Chiral Principal Series Categories.” 2014. Doctoral Dissertation, Harvard University. Accessed March 01, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305.
MLA Handbook (7th Edition):
Raskin, Samuel David. “Chiral Principal Series Categories.” 2014. Web. 01 Mar 2021.
Vancouver:
Raskin SD. Chiral Principal Series Categories. [Internet] [Doctoral dissertation]. Harvard University; 2014. [cited 2021 Mar 01]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305.
Council of Science Editors:
Raskin SD. Chiral Principal Series Categories. [Doctoral Dissertation]. Harvard University; 2014. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305
4. Mathew, Akhil. Nilpotence and Descent in Stable Homotopy Theory.
Degree: PhD, 2017, Harvard University
URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:40046422
Subjects/Keywords: Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Mathew, A. (2017). Nilpotence and Descent in Stable Homotopy Theory. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:40046422
Chicago Manual of Style (16th Edition):
Mathew, Akhil. “Nilpotence and Descent in Stable Homotopy Theory.” 2017. Doctoral Dissertation, Harvard University. Accessed March 01, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:40046422.
MLA Handbook (7th Edition):
Mathew, Akhil. “Nilpotence and Descent in Stable Homotopy Theory.” 2017. Web. 01 Mar 2021.
Vancouver:
Mathew A. Nilpotence and Descent in Stable Homotopy Theory. [Internet] [Doctoral dissertation]. Harvard University; 2017. [cited 2021 Mar 01]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:40046422.
Council of Science Editors:
Mathew A. Nilpotence and Descent in Stable Homotopy Theory. [Doctoral Dissertation]. Harvard University; 2017. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:40046422
5. Schieder, Simon Fabian. Picard-Lefschetz Oscillators for the Drinfeld-Lafforgue-Vinberg Compactification.
Degree: PhD, 2015, Harvard University
URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467321
Subjects/Keywords: Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Schieder, S. F. (2015). Picard-Lefschetz Oscillators for the Drinfeld-Lafforgue-Vinberg Compactification. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467321
Chicago Manual of Style (16th Edition):
Schieder, Simon Fabian. “Picard-Lefschetz Oscillators for the Drinfeld-Lafforgue-Vinberg Compactification.” 2015. Doctoral Dissertation, Harvard University. Accessed March 01, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467321.
MLA Handbook (7th Edition):
Schieder, Simon Fabian. “Picard-Lefschetz Oscillators for the Drinfeld-Lafforgue-Vinberg Compactification.” 2015. Web. 01 Mar 2021.
Vancouver:
Schieder SF. Picard-Lefschetz Oscillators for the Drinfeld-Lafforgue-Vinberg Compactification. [Internet] [Doctoral dissertation]. Harvard University; 2015. [cited 2021 Mar 01]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467321.
Council of Science Editors:
Schieder SF. Picard-Lefschetz Oscillators for the Drinfeld-Lafforgue-Vinberg Compactification. [Doctoral Dissertation]. Harvard University; 2015. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467321
6. Woolf, Matthew Jacob. Relative Jacobians of Linear Systems.
Degree: PhD, Mathematics, 2014, Harvard University
URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274184
Subjects/Keywords: Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Woolf, M. J. (2014). Relative Jacobians of Linear Systems. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274184
Chicago Manual of Style (16th Edition):
Woolf, Matthew Jacob. “Relative Jacobians of Linear Systems.” 2014. Doctoral Dissertation, Harvard University. Accessed March 01, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274184.
MLA Handbook (7th Edition):
Woolf, Matthew Jacob. “Relative Jacobians of Linear Systems.” 2014. Web. 01 Mar 2021.
Vancouver:
Woolf MJ. Relative Jacobians of Linear Systems. [Internet] [Doctoral dissertation]. Harvard University; 2014. [cited 2021 Mar 01]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274184.
Council of Science Editors:
Woolf MJ. Relative Jacobians of Linear Systems. [Doctoral Dissertation]. Harvard University; 2014. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274184