Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"Harvard University" +contributor:("Gaitsgory, Dennis"). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Campbell, Christopher Justin. Nearby Cycles of Whittaker Sheaves.

Degree: PhD, 2018, Harvard University

In this thesis we study the nearby cycles of a Whittaker sheaf as it degenerates to an object of the principal series category. In the… (more)

Subjects/Keywords: Mathematics

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Campbell, C. J. (2018). Nearby Cycles of Whittaker Sheaves. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:40050118

Chicago Manual of Style (16th Edition):

Campbell, Christopher Justin. “Nearby Cycles of Whittaker Sheaves.” 2018. Doctoral Dissertation, Harvard University. Accessed March 01, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:40050118.

MLA Handbook (7th Edition):

Campbell, Christopher Justin. “Nearby Cycles of Whittaker Sheaves.” 2018. Web. 01 Mar 2021.

Vancouver:

Campbell CJ. Nearby Cycles of Whittaker Sheaves. [Internet] [Doctoral dissertation]. Harvard University; 2018. [cited 2021 Mar 01]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:40050118.

Council of Science Editors:

Campbell CJ. Nearby Cycles of Whittaker Sheaves. [Doctoral Dissertation]. Harvard University; 2018. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:40050118


Harvard University

2. Barlev, Jonathan. D-Modules on Spaces of Rational Maps and on Other Generic Data.

Degree: PhD, Mathematics, 2012, Harvard University

Fix an algebraic curve X. We study the problem of parametrizing geometric data over X, which is only generically defined. E.g., parametrizing generically defined maps… (more)

Subjects/Keywords: D-modules; generic data; mathematics; geometric Langlands; homologically contractible

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Barlev, J. (2012). D-Modules on Spaces of Rational Maps and on Other Generic Data. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540

Chicago Manual of Style (16th Edition):

Barlev, Jonathan. “D-Modules on Spaces of Rational Maps and on Other Generic Data.” 2012. Doctoral Dissertation, Harvard University. Accessed March 01, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540.

MLA Handbook (7th Edition):

Barlev, Jonathan. “D-Modules on Spaces of Rational Maps and on Other Generic Data.” 2012. Web. 01 Mar 2021.

Vancouver:

Barlev J. D-Modules on Spaces of Rational Maps and on Other Generic Data. [Internet] [Doctoral dissertation]. Harvard University; 2012. [cited 2021 Mar 01]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540.

Council of Science Editors:

Barlev J. D-Modules on Spaces of Rational Maps and on Other Generic Data. [Doctoral Dissertation]. Harvard University; 2012. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540


Harvard University

3. Raskin, Samuel David. Chiral Principal Series Categories.

Degree: PhD, Mathematics, 2014, Harvard University

This thesis begins a study of principal series categories in geometric representation theory using the Beilinson-Drinfeld theory of chiral algebras. We study Whittaker objects in… (more)

Subjects/Keywords: Mathematics; Algebra; Algebraic geometry; Automorphic forms; Geometric Langlands; Representation theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Raskin, S. D. (2014). Chiral Principal Series Categories. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305

Chicago Manual of Style (16th Edition):

Raskin, Samuel David. “Chiral Principal Series Categories.” 2014. Doctoral Dissertation, Harvard University. Accessed March 01, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305.

MLA Handbook (7th Edition):

Raskin, Samuel David. “Chiral Principal Series Categories.” 2014. Web. 01 Mar 2021.

Vancouver:

Raskin SD. Chiral Principal Series Categories. [Internet] [Doctoral dissertation]. Harvard University; 2014. [cited 2021 Mar 01]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305.

Council of Science Editors:

Raskin SD. Chiral Principal Series Categories. [Doctoral Dissertation]. Harvard University; 2014. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305

4. Mathew, Akhil. Nilpotence and Descent in Stable Homotopy Theory.

Degree: PhD, 2017, Harvard University

We study various applications of the ideas of descent and nilpotence to stable homotopy theory. In particular, we give a descent-theoretic calculation of the Picard… (more)

Subjects/Keywords: Mathematics

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mathew, A. (2017). Nilpotence and Descent in Stable Homotopy Theory. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:40046422

Chicago Manual of Style (16th Edition):

Mathew, Akhil. “Nilpotence and Descent in Stable Homotopy Theory.” 2017. Doctoral Dissertation, Harvard University. Accessed March 01, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:40046422.

MLA Handbook (7th Edition):

Mathew, Akhil. “Nilpotence and Descent in Stable Homotopy Theory.” 2017. Web. 01 Mar 2021.

Vancouver:

Mathew A. Nilpotence and Descent in Stable Homotopy Theory. [Internet] [Doctoral dissertation]. Harvard University; 2017. [cited 2021 Mar 01]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:40046422.

Council of Science Editors:

Mathew A. Nilpotence and Descent in Stable Homotopy Theory. [Doctoral Dissertation]. Harvard University; 2017. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:40046422

5. Schieder, Simon Fabian. Picard-Lefschetz Oscillators for the Drinfeld-Lafforgue-Vinberg Compactification.

Degree: PhD, 2015, Harvard University

We study the singularities of the Drinfeld-Lafforgue-Vinberg compactification of the moduli stack of G-bundles on a smooth projective curve for a reductive group G. The… (more)

Subjects/Keywords: Mathematics

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schieder, S. F. (2015). Picard-Lefschetz Oscillators for the Drinfeld-Lafforgue-Vinberg Compactification. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467321

Chicago Manual of Style (16th Edition):

Schieder, Simon Fabian. “Picard-Lefschetz Oscillators for the Drinfeld-Lafforgue-Vinberg Compactification.” 2015. Doctoral Dissertation, Harvard University. Accessed March 01, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467321.

MLA Handbook (7th Edition):

Schieder, Simon Fabian. “Picard-Lefschetz Oscillators for the Drinfeld-Lafforgue-Vinberg Compactification.” 2015. Web. 01 Mar 2021.

Vancouver:

Schieder SF. Picard-Lefschetz Oscillators for the Drinfeld-Lafforgue-Vinberg Compactification. [Internet] [Doctoral dissertation]. Harvard University; 2015. [cited 2021 Mar 01]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467321.

Council of Science Editors:

Schieder SF. Picard-Lefschetz Oscillators for the Drinfeld-Lafforgue-Vinberg Compactification. [Doctoral Dissertation]. Harvard University; 2015. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467321

6. Woolf, Matthew Jacob. Relative Jacobians of Linear Systems.

Degree: PhD, Mathematics, 2014, Harvard University

Let X be a smooth projective variety. Given any basepoint-free linear system, |D|, there is a dense open subset parametrizing smooth divisors, and over that… (more)

Subjects/Keywords: Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Woolf, M. J. (2014). Relative Jacobians of Linear Systems. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274184

Chicago Manual of Style (16th Edition):

Woolf, Matthew Jacob. “Relative Jacobians of Linear Systems.” 2014. Doctoral Dissertation, Harvard University. Accessed March 01, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274184.

MLA Handbook (7th Edition):

Woolf, Matthew Jacob. “Relative Jacobians of Linear Systems.” 2014. Web. 01 Mar 2021.

Vancouver:

Woolf MJ. Relative Jacobians of Linear Systems. [Internet] [Doctoral dissertation]. Harvard University; 2014. [cited 2021 Mar 01]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274184.

Council of Science Editors:

Woolf MJ. Relative Jacobians of Linear Systems. [Doctoral Dissertation]. Harvard University; 2014. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274184

.