Advanced search options
You searched for +publisher:"Georgia Tech" +contributor:("Loss, Michael")
.
Showing records 1 – 15 of
15 total matches.
▼ Search Limiters
Georgia Tech
1. Kieffer, Thomas Forrest. The Maxwell-Pauli Equations.
Degree: PhD, Mathematics, 2020, Georgia Tech
URL: http://hdl.handle.net/1853/62787
Subjects/Keywords: Mathematical Physics; The Analysis of Partial Differential Equations
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Kieffer, T. F. (2020). The Maxwell-Pauli Equations. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/62787
Chicago Manual of Style (16th Edition):
Kieffer, Thomas Forrest. “The Maxwell-Pauli Equations.” 2020. Doctoral Dissertation, Georgia Tech. Accessed March 01, 2021. http://hdl.handle.net/1853/62787.
MLA Handbook (7th Edition):
Kieffer, Thomas Forrest. “The Maxwell-Pauli Equations.” 2020. Web. 01 Mar 2021.
Vancouver:
Kieffer TF. The Maxwell-Pauli Equations. [Internet] [Doctoral dissertation]. Georgia Tech; 2020. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1853/62787.
Council of Science Editors:
Kieffer TF. The Maxwell-Pauli Equations. [Doctoral Dissertation]. Georgia Tech; 2020. Available from: http://hdl.handle.net/1853/62787
Georgia Tech
2. Einav, Amit. Two problems in mathematical physics: Villani's conjecture and trace inequality for the fractional Laplacian.
Degree: PhD, Mathematics, 2011, Georgia Tech
URL: http://hdl.handle.net/1853/42788
Subjects/Keywords: Fractional laplacian; Villani's conjecture; Entropy production; Kac's model; Trace inequality; Mathematical physics; Statistical mechanics; Transport theory; Particle methods (Numerical analysis); Inequalities (Mathematics)
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Einav, A. (2011). Two problems in mathematical physics: Villani's conjecture and trace inequality for the fractional Laplacian. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/42788
Chicago Manual of Style (16th Edition):
Einav, Amit. “Two problems in mathematical physics: Villani's conjecture and trace inequality for the fractional Laplacian.” 2011. Doctoral Dissertation, Georgia Tech. Accessed March 01, 2021. http://hdl.handle.net/1853/42788.
MLA Handbook (7th Edition):
Einav, Amit. “Two problems in mathematical physics: Villani's conjecture and trace inequality for the fractional Laplacian.” 2011. Web. 01 Mar 2021.
Vancouver:
Einav A. Two problems in mathematical physics: Villani's conjecture and trace inequality for the fractional Laplacian. [Internet] [Doctoral dissertation]. Georgia Tech; 2011. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1853/42788.
Council of Science Editors:
Einav A. Two problems in mathematical physics: Villani's conjecture and trace inequality for the fractional Laplacian. [Doctoral Dissertation]. Georgia Tech; 2011. Available from: http://hdl.handle.net/1853/42788
Georgia Tech
3. Dever, John William. Local space and time scaling exponents for diffusion on compact metric spaces.
Degree: PhD, Mathematics, 2018, Georgia Tech
URL: http://hdl.handle.net/1853/60250
Subjects/Keywords: Local walk dimension; Variable Ahlfors regularity; Local dimension; Metric geometry; Variable exponent; Random walks on fractal graphs; Mean exit time; Gamma convergence; Mosco convergence; Weak convergence; Diffusion on fractals
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Dever, J. W. (2018). Local space and time scaling exponents for diffusion on compact metric spaces. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/60250
Chicago Manual of Style (16th Edition):
Dever, John William. “Local space and time scaling exponents for diffusion on compact metric spaces.” 2018. Doctoral Dissertation, Georgia Tech. Accessed March 01, 2021. http://hdl.handle.net/1853/60250.
MLA Handbook (7th Edition):
Dever, John William. “Local space and time scaling exponents for diffusion on compact metric spaces.” 2018. Web. 01 Mar 2021.
Vancouver:
Dever JW. Local space and time scaling exponents for diffusion on compact metric spaces. [Internet] [Doctoral dissertation]. Georgia Tech; 2018. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1853/60250.
Council of Science Editors:
Dever JW. Local space and time scaling exponents for diffusion on compact metric spaces. [Doctoral Dissertation]. Georgia Tech; 2018. Available from: http://hdl.handle.net/1853/60250
4. Viana Camejo, Mikel. Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains.
Degree: PhD, Mathematics, 2018, Georgia Tech
URL: http://hdl.handle.net/1853/59176
Subjects/Keywords: Quasi-periodic dynamics; KAM theory; Lower dimensional elliptic tori; Skew-products; Compensated domains
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Viana Camejo, M. (2018). Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/59176
Chicago Manual of Style (16th Edition):
Viana Camejo, Mikel. “Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains.” 2018. Doctoral Dissertation, Georgia Tech. Accessed March 01, 2021. http://hdl.handle.net/1853/59176.
MLA Handbook (7th Edition):
Viana Camejo, Mikel. “Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains.” 2018. Web. 01 Mar 2021.
Vancouver:
Viana Camejo M. Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains. [Internet] [Doctoral dissertation]. Georgia Tech; 2018. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1853/59176.
Council of Science Editors:
Viana Camejo M. Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains. [Doctoral Dissertation]. Georgia Tech; 2018. Available from: http://hdl.handle.net/1853/59176
5. Sedjro, Marc Mawulom. On the almost axisymmetric flows with forcing terms.
Degree: PhD, Mathematics, 2012, Georgia Tech
URL: http://hdl.handle.net/1853/44879
Subjects/Keywords: Wasserstein space; Boussinesq; Monge-Ampère equations; Axisymmetric flows; Hamiltonian system; Axial flow; Cyclones
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Sedjro, M. M. (2012). On the almost axisymmetric flows with forcing terms. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/44879
Chicago Manual of Style (16th Edition):
Sedjro, Marc Mawulom. “On the almost axisymmetric flows with forcing terms.” 2012. Doctoral Dissertation, Georgia Tech. Accessed March 01, 2021. http://hdl.handle.net/1853/44879.
MLA Handbook (7th Edition):
Sedjro, Marc Mawulom. “On the almost axisymmetric flows with forcing terms.” 2012. Web. 01 Mar 2021.
Vancouver:
Sedjro MM. On the almost axisymmetric flows with forcing terms. [Internet] [Doctoral dissertation]. Georgia Tech; 2012. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1853/44879.
Council of Science Editors:
Sedjro MM. On the almost axisymmetric flows with forcing terms. [Doctoral Dissertation]. Georgia Tech; 2012. Available from: http://hdl.handle.net/1853/44879
6. Sloane, Craig Andrew. Hardy-Sobolev-Maz'ya inequalities for fractional integrals on halfspaces and convex domains.
Degree: PhD, Mathematics, 2011, Georgia Tech
URL: http://hdl.handle.net/1853/41125
Subjects/Keywords: Maz'ya; Hardy; Sobolev spaces; Inequalities; Rearrangments; Functional analysis; Inequalities (Mathematics); Fractional integrals
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Sloane, C. A. (2011). Hardy-Sobolev-Maz'ya inequalities for fractional integrals on halfspaces and convex domains. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/41125
Chicago Manual of Style (16th Edition):
Sloane, Craig Andrew. “Hardy-Sobolev-Maz'ya inequalities for fractional integrals on halfspaces and convex domains.” 2011. Doctoral Dissertation, Georgia Tech. Accessed March 01, 2021. http://hdl.handle.net/1853/41125.
MLA Handbook (7th Edition):
Sloane, Craig Andrew. “Hardy-Sobolev-Maz'ya inequalities for fractional integrals on halfspaces and convex domains.” 2011. Web. 01 Mar 2021.
Vancouver:
Sloane CA. Hardy-Sobolev-Maz'ya inequalities for fractional integrals on halfspaces and convex domains. [Internet] [Doctoral dissertation]. Georgia Tech; 2011. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1853/41125.
Council of Science Editors:
Sloane CA. Hardy-Sobolev-Maz'ya inequalities for fractional integrals on halfspaces and convex domains. [Doctoral Dissertation]. Georgia Tech; 2011. Available from: http://hdl.handle.net/1853/41125
7. Kim, Hwa Kil. Hamiltonian systems and the calculus of differential forms on the Wasserstein space.
Degree: PhD, Mathematics, 2009, Georgia Tech
URL: http://hdl.handle.net/1853/29720
Subjects/Keywords: Hamiltonian systems; Differential forms; Wasserstein space; Hamiltonian systems; Differential forms
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Kim, H. K. (2009). Hamiltonian systems and the calculus of differential forms on the Wasserstein space. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/29720
Chicago Manual of Style (16th Edition):
Kim, Hwa Kil. “Hamiltonian systems and the calculus of differential forms on the Wasserstein space.” 2009. Doctoral Dissertation, Georgia Tech. Accessed March 01, 2021. http://hdl.handle.net/1853/29720.
MLA Handbook (7th Edition):
Kim, Hwa Kil. “Hamiltonian systems and the calculus of differential forms on the Wasserstein space.” 2009. Web. 01 Mar 2021.
Vancouver:
Kim HK. Hamiltonian systems and the calculus of differential forms on the Wasserstein space. [Internet] [Doctoral dissertation]. Georgia Tech; 2009. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1853/29720.
Council of Science Editors:
Kim HK. Hamiltonian systems and the calculus of differential forms on the Wasserstein space. [Doctoral Dissertation]. Georgia Tech; 2009. Available from: http://hdl.handle.net/1853/29720
8. Vaidyanathan, Ranjini. Thermostated Kac models.
Degree: PhD, Mathematics, 2015, Georgia Tech
URL: http://hdl.handle.net/1853/54446
Subjects/Keywords: Kinetic theory; Spectral gap; Heat bath
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Vaidyanathan, R. (2015). Thermostated Kac models. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/54446
Chicago Manual of Style (16th Edition):
Vaidyanathan, Ranjini. “Thermostated Kac models.” 2015. Doctoral Dissertation, Georgia Tech. Accessed March 01, 2021. http://hdl.handle.net/1853/54446.
MLA Handbook (7th Edition):
Vaidyanathan, Ranjini. “Thermostated Kac models.” 2015. Web. 01 Mar 2021.
Vancouver:
Vaidyanathan R. Thermostated Kac models. [Internet] [Doctoral dissertation]. Georgia Tech; 2015. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1853/54446.
Council of Science Editors:
Vaidyanathan R. Thermostated Kac models. [Doctoral Dissertation]. Georgia Tech; 2015. Available from: http://hdl.handle.net/1853/54446
9. Awi, Romeo Olivier. Minimization problems involving polyconvex integrands.
Degree: PhD, Mathematics, 2015, Georgia Tech
URL: http://hdl.handle.net/1853/53901
Subjects/Keywords: Relaxation; Duality; Lack of compactness; Euler-lagrange equations and polar factorization
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Awi, R. O. (2015). Minimization problems involving polyconvex integrands. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/53901
Chicago Manual of Style (16th Edition):
Awi, Romeo Olivier. “Minimization problems involving polyconvex integrands.” 2015. Doctoral Dissertation, Georgia Tech. Accessed March 01, 2021. http://hdl.handle.net/1853/53901.
MLA Handbook (7th Edition):
Awi, Romeo Olivier. “Minimization problems involving polyconvex integrands.” 2015. Web. 01 Mar 2021.
Vancouver:
Awi RO. Minimization problems involving polyconvex integrands. [Internet] [Doctoral dissertation]. Georgia Tech; 2015. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1853/53901.
Council of Science Editors:
Awi RO. Minimization problems involving polyconvex integrands. [Doctoral Dissertation]. Georgia Tech; 2015. Available from: http://hdl.handle.net/1853/53901
10. Tossounian, Hagop B. Mathematical problems concerning the Kac model.
Degree: PhD, Mathematics, 2017, Georgia Tech
URL: http://hdl.handle.net/1853/58657
Subjects/Keywords: Kinetic theory; Kac model; Partially thermostated Kac model; Non-equilibrium statistical mechanics; Equilibration; GTW metric
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Tossounian, H. B. (2017). Mathematical problems concerning the Kac model. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/58657
Chicago Manual of Style (16th Edition):
Tossounian, Hagop B. “Mathematical problems concerning the Kac model.” 2017. Doctoral Dissertation, Georgia Tech. Accessed March 01, 2021. http://hdl.handle.net/1853/58657.
MLA Handbook (7th Edition):
Tossounian, Hagop B. “Mathematical problems concerning the Kac model.” 2017. Web. 01 Mar 2021.
Vancouver:
Tossounian HB. Mathematical problems concerning the Kac model. [Internet] [Doctoral dissertation]. Georgia Tech; 2017. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1853/58657.
Council of Science Editors:
Tossounian HB. Mathematical problems concerning the Kac model. [Doctoral Dissertation]. Georgia Tech; 2017. Available from: http://hdl.handle.net/1853/58657
11. Zhang, Lei. Analysis and numerical methods in solid state physics and chemistry.
Degree: PhD, Mathematics, 2017, Georgia Tech
URL: http://hdl.handle.net/1853/58675
Subjects/Keywords: Mathematical physics; Dynamical system; Frennkel-Kontorova model; Normally hyperbolic invariant manifolds; Parameterization method
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Zhang, L. (2017). Analysis and numerical methods in solid state physics and chemistry. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/58675
Chicago Manual of Style (16th Edition):
Zhang, Lei. “Analysis and numerical methods in solid state physics and chemistry.” 2017. Doctoral Dissertation, Georgia Tech. Accessed March 01, 2021. http://hdl.handle.net/1853/58675.
MLA Handbook (7th Edition):
Zhang, Lei. “Analysis and numerical methods in solid state physics and chemistry.” 2017. Web. 01 Mar 2021.
Vancouver:
Zhang L. Analysis and numerical methods in solid state physics and chemistry. [Internet] [Doctoral dissertation]. Georgia Tech; 2017. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1853/58675.
Council of Science Editors:
Zhang L. Analysis and numerical methods in solid state physics and chemistry. [Doctoral Dissertation]. Georgia Tech; 2017. Available from: http://hdl.handle.net/1853/58675
12. Ghanta, Rohan. The polaron hydrogenic atom in a strong magnetic field.
Degree: PhD, Mathematics, 2019, Georgia Tech
URL: http://hdl.handle.net/1853/61780
Subjects/Keywords: Polaron; Strong magnetic fields
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Ghanta, R. (2019). The polaron hydrogenic atom in a strong magnetic field. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/61780
Chicago Manual of Style (16th Edition):
Ghanta, Rohan. “The polaron hydrogenic atom in a strong magnetic field.” 2019. Doctoral Dissertation, Georgia Tech. Accessed March 01, 2021. http://hdl.handle.net/1853/61780.
MLA Handbook (7th Edition):
Ghanta, Rohan. “The polaron hydrogenic atom in a strong magnetic field.” 2019. Web. 01 Mar 2021.
Vancouver:
Ghanta R. The polaron hydrogenic atom in a strong magnetic field. [Internet] [Doctoral dissertation]. Georgia Tech; 2019. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1853/61780.
Council of Science Editors:
Ghanta R. The polaron hydrogenic atom in a strong magnetic field. [Doctoral Dissertation]. Georgia Tech; 2019. Available from: http://hdl.handle.net/1853/61780
Georgia Tech
13. Hupp, Philipp. Mahler's conjecture in convex geometry: a summary and further numerical analysis.
Degree: MS, Mathematics, 2010, Georgia Tech
URL: http://hdl.handle.net/1853/37262
Subjects/Keywords: Dual body; Convex geometry; Mahler volume; Volume product; Convex geometry; Volume (Cubic content)
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Hupp, P. (2010). Mahler's conjecture in convex geometry: a summary and further numerical analysis. (Masters Thesis). Georgia Tech. Retrieved from http://hdl.handle.net/1853/37262
Chicago Manual of Style (16th Edition):
Hupp, Philipp. “Mahler's conjecture in convex geometry: a summary and further numerical analysis.” 2010. Masters Thesis, Georgia Tech. Accessed March 01, 2021. http://hdl.handle.net/1853/37262.
MLA Handbook (7th Edition):
Hupp, Philipp. “Mahler's conjecture in convex geometry: a summary and further numerical analysis.” 2010. Web. 01 Mar 2021.
Vancouver:
Hupp P. Mahler's conjecture in convex geometry: a summary and further numerical analysis. [Internet] [Masters thesis]. Georgia Tech; 2010. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1853/37262.
Council of Science Editors:
Hupp P. Mahler's conjecture in convex geometry: a summary and further numerical analysis. [Masters Thesis]. Georgia Tech; 2010. Available from: http://hdl.handle.net/1853/37262
Georgia Tech
14. Pugliese, Alessandro. Theoretical and numerical aspects of coalescing of eigenvalues and singular values of parameter dependent matrices.
Degree: PhD, Mathematics, 2008, Georgia Tech
URL: http://hdl.handle.net/1853/24730
Subjects/Keywords: Periodicity; Matrix function; Eigenvalues; Conical intersection; Singular values; Eigenvalues; Matrices; Decomposition (Mathematics); Algorithms; Eigenvectors; Differential operators
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Pugliese, A. (2008). Theoretical and numerical aspects of coalescing of eigenvalues and singular values of parameter dependent matrices. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/24730
Chicago Manual of Style (16th Edition):
Pugliese, Alessandro. “Theoretical and numerical aspects of coalescing of eigenvalues and singular values of parameter dependent matrices.” 2008. Doctoral Dissertation, Georgia Tech. Accessed March 01, 2021. http://hdl.handle.net/1853/24730.
MLA Handbook (7th Edition):
Pugliese, Alessandro. “Theoretical and numerical aspects of coalescing of eigenvalues and singular values of parameter dependent matrices.” 2008. Web. 01 Mar 2021.
Vancouver:
Pugliese A. Theoretical and numerical aspects of coalescing of eigenvalues and singular values of parameter dependent matrices. [Internet] [Doctoral dissertation]. Georgia Tech; 2008. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1853/24730.
Council of Science Editors:
Pugliese A. Theoretical and numerical aspects of coalescing of eigenvalues and singular values of parameter dependent matrices. [Doctoral Dissertation]. Georgia Tech; 2008. Available from: http://hdl.handle.net/1853/24730
Georgia Tech
15. Yildirim Yolcu, Selma. Eigenvalue inequalities for relativistic Hamiltonians and fractional Laplacian.
Degree: PhD, Mathematics, 2009, Georgia Tech
URL: http://hdl.handle.net/1853/31649
Subjects/Keywords: Fractional Laplacian; Klein-Gordon operator; Eigenvalue; Laplacian operator; Eigenvalues; Klein-Gordon equation; Spectral theory (Mathematics)
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Yildirim Yolcu, S. (2009). Eigenvalue inequalities for relativistic Hamiltonians and fractional Laplacian. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/31649
Chicago Manual of Style (16th Edition):
Yildirim Yolcu, Selma. “Eigenvalue inequalities for relativistic Hamiltonians and fractional Laplacian.” 2009. Doctoral Dissertation, Georgia Tech. Accessed March 01, 2021. http://hdl.handle.net/1853/31649.
MLA Handbook (7th Edition):
Yildirim Yolcu, Selma. “Eigenvalue inequalities for relativistic Hamiltonians and fractional Laplacian.” 2009. Web. 01 Mar 2021.
Vancouver:
Yildirim Yolcu S. Eigenvalue inequalities for relativistic Hamiltonians and fractional Laplacian. [Internet] [Doctoral dissertation]. Georgia Tech; 2009. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1853/31649.
Council of Science Editors:
Yildirim Yolcu S. Eigenvalue inequalities for relativistic Hamiltonians and fractional Laplacian. [Doctoral Dissertation]. Georgia Tech; 2009. Available from: http://hdl.handle.net/1853/31649