Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:


Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"Georgia Tech" +contributor:("Leavey, Jennifer"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

Georgia Tech

1. Chang, Timothy Z. Protein nanoparticle vaccines.

Degree: PhD, Chemical and Biomolecular Engineering, 2017, Georgia Tech

Highly conserved pathogen proteins are essential for broadly cross-protective vaccines, but tend to be poorly immunogenic. Protein nanoparticle vaccines made from conserved influenza matrix protein 2 (M2e) trigger specific, adaptive immune responses that soluble protein cannot. Without excipients or adjuvants, protein nanoparticles eliminate the possibility of off-target immune responses, and their abiotic nature makes them amenable to cold chain-independent storage and use. The work described herein (1) tests an expanded range of recombinant influenza proteins as viable components of influenza protein nanoparticle vaccines, (2) establishes the immunological basis behind protein nanoparticle adjuvancy in vitro and in vivo, (3) examines long-term, cold-chain-independent storage of protein nanoparticle vaccines, and (4) explores using molecular adjuvants as nanoparticle coatings for enhancing vaccine efficacy. Nanoparticle size and coating were found to be important design criteria for immunogenic protein nanoparticles, and in vivo biodistribution and in vitro dendritic cell processing of nanoparticles yielded insights into mechanisms of protein nanoparticle adjuvancy. Extended room-temperature wet storage of nanoparticles for up to 3 months was shown to yield no loss in immunogenicity, and the molecular adjuvants flagellin and immunoglobulin were shown to enhance various aspects of the immune response in a mouse immunization model. As cold chain-independent storage is an important goal for disseminating new types of vaccines to the developing world, protein nanoparticles have proven to be an attractive and stable platform technology for the co-delivery of antigen and immunostimulatory adjuvant. Furthermore, the ability of immunoglobulin (Ig) to enhance immune responses to protein nanoparticles yields fundamental insights into the innate immunofeedback mechanisms mediated by this protein. In addition to providing a host-derived means of enhancing adjuvancy, Ig-opsonized protein nanoparticles could serve as a tool for further investigations in the broader field of immunoengineering. Advisors/Committee Members: Champion, Julie (advisor), Wang, Baozhong (committee member), Leavey, Jennifer (committee member), Prausnitz, Mark (committee member), Roy, Krishnendu (committee member).

Subjects/Keywords: Nanoparticle; Vaccine; Immunoengineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chang, T. Z. (2017). Protein nanoparticle vaccines. (Doctoral Dissertation). Georgia Tech. Retrieved from

Chicago Manual of Style (16th Edition):

Chang, Timothy Z. “Protein nanoparticle vaccines.” 2017. Doctoral Dissertation, Georgia Tech. Accessed November 12, 2019.

MLA Handbook (7th Edition):

Chang, Timothy Z. “Protein nanoparticle vaccines.” 2017. Web. 12 Nov 2019.


Chang TZ. Protein nanoparticle vaccines. [Internet] [Doctoral dissertation]. Georgia Tech; 2017. [cited 2019 Nov 12]. Available from:

Council of Science Editors:

Chang TZ. Protein nanoparticle vaccines. [Doctoral Dissertation]. Georgia Tech; 2017. Available from: