Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"Georgia Tech" +contributor:("Gottfried, David S."). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Georgia Tech

1. Xia, Ning. Processing, Characterization and Modeling of Solution-processed Indium Tin Oxide Films.

Degree: PhD, Materials Science and Engineering, 2018, Georgia Tech

Indium tin oxide (ITO) is the most widely used transparent conducting material because of its excellent combination of high optical transparency and low electrical resistivity. ITO films have been used in numerous optoelectronic devices, such as photovoltaic cells, displays and smart glasses. Vacuum-based deposition is the commercially available method to fabricate ITO films currently, in which strict vacuum conditions and high-cost equipment are required. In contrast, solution-processed methods are promising low-cost alternatives to deposit ITO films and patterns under atmospheric conditions. The objectives for this research are to investigate the optimal conditions for obtaining high-quality ITO films with solution-processed methods, to understand the microstructural evolution of multi-layer ITO films via a non-destructive characterization method and to study the impedance behavior of ITO films through experiments and simulations. The structure of this dissertation is based on achieving these objectives. 1) Spin-coating method and ink-jet printing method were optimized to fabricate multi-layer ITO films. The surface morphology, electrical and optical properties were compared. 2) Neutron reflectometry was first used to investigate the buried microstructure of solution-processed multi-layer ITO films. The porosity in ITO films were quantitatively calculated and related to the electrical properties. 3) The electrical properties of multi-layer solution-processed ITO films were experimentally characterized by impedance spectroscopy. The conduction mechanism in ITO films and the influence of open circuit capacitance from the measurement configuration and equipment were discussed. 4) The electrical properties of ITO films were further studied by finite element analysis in 2D and 3D models. The effects of sample geometry, film conductivity and electrodes geometry were simulated. It was proved that correct measurement of impedance spectroscopy requires a well-controlled instrument setup and well-defined sample-electrode geometry to interpret the intrinsic impedance and capacitance of thin film samples. The best ITO films made in this work had a combination of very low surface roughness (< 2 nm), high optical transmittance (> 90%) over the visible light range and controllable low sheet resistivity (10-2 to 10-3 Ω∙cm). These low-cost solution-processed patternable ITO films, with sub-micrometer thickness, have great potential for most optoelectronic applications. Advisors/Committee Members: Gerhardt, Rosario A. (advisor), Bassiri-Gharb, Nazanin (committee member), Tsukruk, Vladimir (committee member), Qin, Dong (committee member), Tentzeris, Emmanouil M. (committee member), Gottfried, David S. (committee member).

Subjects/Keywords: Indium tin oxide; Solution deposition; Neutron reflectometry; Impedance spectroscopy; Finite element analysis.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xia, N. (2018). Processing, Characterization and Modeling of Solution-processed Indium Tin Oxide Films. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/61110

Chicago Manual of Style (16th Edition):

Xia, Ning. “Processing, Characterization and Modeling of Solution-processed Indium Tin Oxide Films.” 2018. Doctoral Dissertation, Georgia Tech. Accessed October 21, 2019. http://hdl.handle.net/1853/61110.

MLA Handbook (7th Edition):

Xia, Ning. “Processing, Characterization and Modeling of Solution-processed Indium Tin Oxide Films.” 2018. Web. 21 Oct 2019.

Vancouver:

Xia N. Processing, Characterization and Modeling of Solution-processed Indium Tin Oxide Films. [Internet] [Doctoral dissertation]. Georgia Tech; 2018. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/1853/61110.

Council of Science Editors:

Xia N. Processing, Characterization and Modeling of Solution-processed Indium Tin Oxide Films. [Doctoral Dissertation]. Georgia Tech; 2018. Available from: http://hdl.handle.net/1853/61110

.