Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"Georgia Tech" +contributor:("Dr. Stephen J. Miller"). Showing records 1 – 2 of 2 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Omole, Imona C. Crosslinked polyimide hollow fiber membranes for aggressive natural gas feed streams.

Degree: PhD, Chemical Engineering, 2008, Georgia Tech

Natural gas is one of the fastest growing primary energy sources in the world today. The increasing world demand for energy requires increased production of high quality natural gas. For the natural gas to be fed into the mainline gas transportation system, it must meet the pipe-line quality standards. Natural gas produced at the wellhead is usually "sub-quality" and contains various impurities such as CO2, H2S, and higher hydrocarbons, which must be removed to meet specifications. Carbon dioxide is usually the most abundant impurity in natural gas feeds and high CO2 partial pressures in the feed can lead to plasticization, which causes loss of some methane product and may ultimately render the membrane ineffective. Moreover, the presence of highly sorbing higher hydrocarbons in the feed can further reduce membrane performance. Covalent crosslinking has been shown to increase plasticization resistance in dense films by suppressing the degree of swelling and segmental chain mobility in the polymer, thereby preserving the selectivity of the membrane. This research focuses on extending the dense film success to asymmetric hollow fibers. In this work, the effect of high pressure CO2 (up to 400 psia CO2 partial pressure) on CO2/CH4 mixed gas separation performance was investigated on defect-free the hollow fiber membrane at different degrees of crosslinking. All the crosslinked fibers were shown to exhibit good resistance to selectivity losses from CO2 induced plasticization, significantly more than the uncrosslinked fibers. Robust resistance of the hollow fiber membranes in the presence of toluene (a highly sorbing contaminant) was also demonstrated as the membranes showed no plasticization. Antiplasticization was found to occur in the presence of toluene feeds with the crosslinkable fibers used in this work. Advisors/Committee Members: Dr. William J. Koros (Committee Chair), Dr. Amyn Teja (Committee Member), Dr. Christopher W. Jones (Committee Member), Dr. Haskell W. Beckham (Committee Member), Dr. Stephen J. Miller (Committee Member).

Subjects/Keywords: Membrane; Carbon dioxide; Natural gas; Hollow fiber; Polyimide; Gas separation; Gas separation membranes; High pressure (Technology); Natural gas; Crosslinked polymers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Omole, I. C. (2008). Crosslinked polyimide hollow fiber membranes for aggressive natural gas feed streams. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/26591

Chicago Manual of Style (16th Edition):

Omole, Imona C. “Crosslinked polyimide hollow fiber membranes for aggressive natural gas feed streams.” 2008. Doctoral Dissertation, Georgia Tech. Accessed April 14, 2021. http://hdl.handle.net/1853/26591.

MLA Handbook (7th Edition):

Omole, Imona C. “Crosslinked polyimide hollow fiber membranes for aggressive natural gas feed streams.” 2008. Web. 14 Apr 2021.

Vancouver:

Omole IC. Crosslinked polyimide hollow fiber membranes for aggressive natural gas feed streams. [Internet] [Doctoral dissertation]. Georgia Tech; 2008. [cited 2021 Apr 14]. Available from: http://hdl.handle.net/1853/26591.

Council of Science Editors:

Omole IC. Crosslinked polyimide hollow fiber membranes for aggressive natural gas feed streams. [Doctoral Dissertation]. Georgia Tech; 2008. Available from: http://hdl.handle.net/1853/26591


Georgia Tech

2. Hillock, Alexis Maureen Wrenn. Crosslinkable Polyimide Mixed Matrix Membranes for Natural Gas Purification.

Degree: PhD, Chemical Engineering, 2005, Georgia Tech

Crosslinkable mixed matrix membranes represent an attractive technology that promises both outstanding separation properties and swelling resistance for the purification of natural gas. This approach relies upon dispersal of a CO2/CH4 size-discriminating zeolite in a crosslinkable polymer, which is resistant to CO2 swelling when crosslinked. The resulting membrane has the potential to separate CO2 from CH4 more effectively than traditional pure polymer membranes, while also providing needed membrane stability in the presence of aggressive CO2-contaminated natural gas streams. Control studies are conducted using the pure crosslinkable polymer to observe the separation properties and swelling resistance. Initial crosslinkable mixed matrix membrane experiments are then performed and result in an increase in membrane productivity, instead of the expected increase in selectivity. Traditionally, this is caused by material incompatibility at the polymer/zeolite interface, so the crosslinkable mixed matrix membranes are characterized to examine this issue. During the material characterization, a new non-ideal transport phenomenon is discovered in the zeolite phase. A model is developed to better understand the transport and predict subsequent experimental results. Once the independent materials are proven to be viable, crosslinkable mixed matrix membranes that show enhancements in both efficiency and productivity and exhibit stability in the presence of aggressive CO2 feeds are created. Advisors/Committee Members: Dr. William J. Koros (Committee Chair), Dr. Christopher W. Jones (Committee Member), Dr. Haskell W. Beckham (Committee Member), Dr. Ronald W. Rousseau (Committee Member), Dr. Stephen J. Miller (Committee Member).

Subjects/Keywords: Crosslinked polyimide; Gas separation; Natural gas purification; Zeolite mesoporosity; Mixed matrix

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hillock, A. M. W. (2005). Crosslinkable Polyimide Mixed Matrix Membranes for Natural Gas Purification. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/13933

Chicago Manual of Style (16th Edition):

Hillock, Alexis Maureen Wrenn. “Crosslinkable Polyimide Mixed Matrix Membranes for Natural Gas Purification.” 2005. Doctoral Dissertation, Georgia Tech. Accessed April 14, 2021. http://hdl.handle.net/1853/13933.

MLA Handbook (7th Edition):

Hillock, Alexis Maureen Wrenn. “Crosslinkable Polyimide Mixed Matrix Membranes for Natural Gas Purification.” 2005. Web. 14 Apr 2021.

Vancouver:

Hillock AMW. Crosslinkable Polyimide Mixed Matrix Membranes for Natural Gas Purification. [Internet] [Doctoral dissertation]. Georgia Tech; 2005. [cited 2021 Apr 14]. Available from: http://hdl.handle.net/1853/13933.

Council of Science Editors:

Hillock AMW. Crosslinkable Polyimide Mixed Matrix Membranes for Natural Gas Purification. [Doctoral Dissertation]. Georgia Tech; 2005. Available from: http://hdl.handle.net/1853/13933

.