Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · date | New search

You searched for +publisher:"Georgia Tech" +contributor:("Dr. Rachel Chen"). Showing records 1 – 2 of 2 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Georgia Tech

1. Wang, Yun. Development of acetic-acid tolerant Zymomonas mobilis strains through adaptation.

Degree: MS, Chemical Engineering, 2008, Georgia Tech

Zymomonas mobilis is one of the most promising microorganisms for bioethanol production. However, its practical use on industrial scale is impeded by its high sensitivity to acetate, which is present in high concentration in pretreated biomass. This research develops an adaptive mutation method for generating acetate-tolerant strains for bioethanol production. The goal is to obtain Zymomonas mobilis strain capable of growing and producing ethanol in the presence of acetate at a concentration typical of a pretreated biomass (2-3%). The interplay between the ability of fermentative production of ethanol and acetate tolerance will be investigated through careful fermentation studies. The potential cross-tolerance to other inhibitors, commonly present in pretreated biomass will be evaluated. A preliminary study on the mechanism of acetate tolerance at the cell membrane level will be conducted. The strain developed through this research will be useful in bioethanol production from biomass. The insights into tolerance mechanisms gained through this study will allow a more rational approach to further engineer a better producing strain. Advisors/Committee Members: Dr. Rachel Chen (Committee Chair), Dr. Athanassios Sambanis (Committee Member), Dr. Sankar Nair (Committee Member).

Subjects/Keywords: Adaptive mutation; Zymomonas; Acetic acid tolerance; Acetic acid; Microorganisms; Alcohol; Fermentation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, Y. (2008). Development of acetic-acid tolerant Zymomonas mobilis strains through adaptation. (Masters Thesis). Georgia Tech. Retrieved from http://hdl.handle.net/1853/29747

Chicago Manual of Style (16th Edition):

Wang, Yun. “Development of acetic-acid tolerant Zymomonas mobilis strains through adaptation.” 2008. Masters Thesis, Georgia Tech. Accessed March 04, 2021. http://hdl.handle.net/1853/29747.

MLA Handbook (7th Edition):

Wang, Yun. “Development of acetic-acid tolerant Zymomonas mobilis strains through adaptation.” 2008. Web. 04 Mar 2021.

Vancouver:

Wang Y. Development of acetic-acid tolerant Zymomonas mobilis strains through adaptation. [Internet] [Masters thesis]. Georgia Tech; 2008. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/1853/29747.

Council of Science Editors:

Wang Y. Development of acetic-acid tolerant Zymomonas mobilis strains through adaptation. [Masters Thesis]. Georgia Tech; 2008. Available from: http://hdl.handle.net/1853/29747


Georgia Tech

2. Richardson, John Michael. Distinguishing between surface and solution catalysis for palladium catalyzed C-C coupling reactions: use of selective poisons.

Degree: PhD, Chemical and Biomolecular Engineering, 2008, Georgia Tech

This work focuses on understanding the heterogeneous/homogeneous nature of the catalytic species for a variety of immobilized metal precatalysts used for C-C coupling reactions. These precatalysts include: (i) tethered organometallic palladium pincer complexes, (ii) an encapsulated small molecule palladium complex in a polymer matrix, (iii) mercapto-modified mesoporous silica metalated with palladium acetate, and (iv) amino-functionalized mesoporous silicas metalated with Ni(II). As part of this investigation, the use of metal scavengers as selective poisons of homogeneous catalysis is introduced and investigated as a test for distinguishing heterogeneous from homogeneous catalysis. The premise of this test is that insoluble materials functionalized with metal binding sites can be used to selectively remove soluble metal, but will not interfere with catalysis from immobilized metal. In this way the test can definitely distinguish between surface and solution catalysis of immobilized metal precatalysts. This work investigates three different C-C coupling reactions catalyzed by the immobilized metal precatalysts mentioned above. These reactions include the Heck, Suzuki, and Kumada reactions. In all cases it is found that catalysis is solely from leached metal. Three different metal scavenging materials are presented as selective poisons that can be used to determine solution vs. surface catalysis. These selective poisons include poly(vinylpyridine), QuadrapureTM TU, and thiol-functionalized mesoporous silica. The results are contrasted against the current understanding of this field of research and subtleties of tests for distinguishing homogeneous from heterogeneous catalysis are presented and discussed. Advisors/Committee Members: Dr. Christopher W. Jones (Committee Chair), Dr. E. Kent Barefield (Committee Member), Dr. Marcus Weck (Committee Member), Dr. Pradeep Agrawal (Committee Member), Dr. Rachel Chen (Committee Member).

Subjects/Keywords: Palladium catalysis; Cross coupling reaction; Heterogeneous vs. homogeneous; Selective poisoning; Palladium catalysts; Heterogeneous catalysis; Catalysis; Catalyst poisoning

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Richardson, J. M. (2008). Distinguishing between surface and solution catalysis for palladium catalyzed C-C coupling reactions: use of selective poisons. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/22704

Chicago Manual of Style (16th Edition):

Richardson, John Michael. “Distinguishing between surface and solution catalysis for palladium catalyzed C-C coupling reactions: use of selective poisons.” 2008. Doctoral Dissertation, Georgia Tech. Accessed March 04, 2021. http://hdl.handle.net/1853/22704.

MLA Handbook (7th Edition):

Richardson, John Michael. “Distinguishing between surface and solution catalysis for palladium catalyzed C-C coupling reactions: use of selective poisons.” 2008. Web. 04 Mar 2021.

Vancouver:

Richardson JM. Distinguishing between surface and solution catalysis for palladium catalyzed C-C coupling reactions: use of selective poisons. [Internet] [Doctoral dissertation]. Georgia Tech; 2008. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/1853/22704.

Council of Science Editors:

Richardson JM. Distinguishing between surface and solution catalysis for palladium catalyzed C-C coupling reactions: use of selective poisons. [Doctoral Dissertation]. Georgia Tech; 2008. Available from: http://hdl.handle.net/1853/22704

.