Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for +publisher:"Georgia Tech" +contributor:("Dr. Krista S. Walton"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Haldoupis, Emmanuel. Mulitscale modeling and screening of nanoporous materials and membranes for separations.

Degree: PhD, Chemical and Biomolecular Engineering, 2013, Georgia Tech

The very large number of distinct structures that are known for metal-organic frameworks (MOFs) and zeolites presents both an opportunity and a challenge for identifying materials with useful properties for targeted separations. In this thesis we propose a three-stage computational methodology for addressing this issue and comprehensively screening all available nanoporous materials. We introduce efficient pore size calculations as a way of discarding large number of materials, which are unsuitable for a specific separation. Materials identified as having desired geometric characteristics can be further analyzed for their infinite dilution adsorption and diffusion properties by calculating the Henry's constants and activation energy barriers for diffusion. This enables us to calculate membrane selectivity in an unprecedented scale and use these values to generate a small set of materials for which the membrane selectivity can be calculated in detail and at finite loading using well-established computational tools. We display the results of using these methods for >500 MOFs and >160 silica zeolites for spherical adsorbates at first and for small linear molecules such as CO₂ later on. In addition we also demonstrate the size of the group of materials this procedure can be applied to, by performing these calculations, for simple adsorbate molecules, for an existing library of >250,000 hypothetical silica zeolites. Finally, efficient methods are introduced for assessing the role of framework flexibility on molecular diffusion in MOFs that do not require defining a classical forcefield for the MOF. These methods combine ab initio MD of the MOF with classical transition state theory and molecular dynamics simulations of the diffusing molecules. The effects of flexibility are shown to be large for CH₄, but not for CO₂ and other small spherical adsorbates, in ZIF-8. Advisors/Committee Members: Dr. David S. Sholl (Committee Chair), Dr. Christopher W. Jones (Committee Member), Dr. Krista S. Walton (Committee Member), Dr. Peter J. Hesketh (Committee Member), Dr. Sankar Nair (Committee Member).

Subjects/Keywords: Molecular simulations; Separations; Zeolites; Metal-organic frameworks; Nanoporous; Nanostructured materials; Membranes (Technology); Separation (Technology)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Haldoupis, E. (2013). Mulitscale modeling and screening of nanoporous materials and membranes for separations. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/47669

Chicago Manual of Style (16th Edition):

Haldoupis, Emmanuel. “Mulitscale modeling and screening of nanoporous materials and membranes for separations.” 2013. Doctoral Dissertation, Georgia Tech. Accessed April 13, 2021. http://hdl.handle.net/1853/47669.

MLA Handbook (7th Edition):

Haldoupis, Emmanuel. “Mulitscale modeling and screening of nanoporous materials and membranes for separations.” 2013. Web. 13 Apr 2021.

Vancouver:

Haldoupis E. Mulitscale modeling and screening of nanoporous materials and membranes for separations. [Internet] [Doctoral dissertation]. Georgia Tech; 2013. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/1853/47669.

Council of Science Editors:

Haldoupis E. Mulitscale modeling and screening of nanoporous materials and membranes for separations. [Doctoral Dissertation]. Georgia Tech; 2013. Available from: http://hdl.handle.net/1853/47669

.