Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"Georgia Tech" +contributor:("Dr. Julia Babensee"). Showing records 1 – 2 of 2 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Heffernan, Michael John. Biodegradable polymeric delivery systems for protein subunit vaccines.

Degree: PhD, Biomedical Engineering, 2008, Georgia Tech

The prevention and treatment of cancer and infectious diseases requires vaccines that can mediate cytotoxic T lymphocyte-based immunity. A promising strategy is protein subunit vaccines composed of purified protein antigens and immunostimulatory adjuvants, such as Toll-like receptor (TLR) agonists. In this research, we developed two new biodegradable polymeric delivery vehicles for protein antigens and TLR agonists, as model vaccine delivery systems. This work was guided by the central hypothesis that an effective vaccine delivery system would have stimulus-responsive degradation and release, biodegradability into excretable non-acidic degradation products, and the ability to incorporate various TLR-inducing adjuvants. The first vaccine delivery system is a cross-linked polyion complex micelle which efficiently encapsulates proteins, DNA, and RNA. The micelle-based delivery system consists of a block copolymer of poly(ethylene glycol) (PEG) and poly(L-lysine), cross-linked by dithiopyridyl side groups to provide transport stability and intracellular release. The second delivery system consists of solid biodegradable microparticles encapsulating proteins, nucleic acids, and hydrophobic compounds. The microparticles are composed of pH-sensitive polyketals, which are a new family of hydrophobic, linear polymers containing backbone ketal linkages. Polyketals are synthesized via a new polymerization method based on the acetal exchange reaction and degrade into non-acidic, excretable degradation products. In addition, the technique of hydrophobic ion pairing was utilized to enhance the encapsulation of ovalbumin, DNA, and RNA in polyketal microparticles via a single emulsion method. Using in vitro and in vivo immunological models, we demonstrated that the micelle- and polyketal-based vaccine delivery systems enhanced the cross-priming of cytotoxic T lymphocytes. The model vaccines were composed of ovalbumin antigen and various TLR-inducing adjuvants including CpG-DNA, monophosphoryl lipid A, and dsRNA. The results demonstrate that the cross-linked micelles and polyketal microparticles have considerable potential as delivery systems for protein-based vaccines. Advisors/Committee Members: Dr. Niren Murthy (Committee Chair), Dr. Carson Meredith (Committee Member), Dr. Julia Babensee (Committee Member), Dr. Mark Prausnitz (Committee Member), Dr. Ravi Bellamkonda (Committee Member).

Subjects/Keywords: Vaccine delivery; Drug delivery; Microencapsulation; Nanospheres; Microspheres; Nanoparticles; Polyacetal; PH-responsive; TLR ligands; Poly(I)-poly(C); Acid-degradable; Vaccines; Polymeric drug delivery systems; Biodegradable plastics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Heffernan, M. J. (2008). Biodegradable polymeric delivery systems for protein subunit vaccines. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/24787

Chicago Manual of Style (16th Edition):

Heffernan, Michael John. “Biodegradable polymeric delivery systems for protein subunit vaccines.” 2008. Doctoral Dissertation, Georgia Tech. Accessed January 16, 2021. http://hdl.handle.net/1853/24787.

MLA Handbook (7th Edition):

Heffernan, Michael John. “Biodegradable polymeric delivery systems for protein subunit vaccines.” 2008. Web. 16 Jan 2021.

Vancouver:

Heffernan MJ. Biodegradable polymeric delivery systems for protein subunit vaccines. [Internet] [Doctoral dissertation]. Georgia Tech; 2008. [cited 2021 Jan 16]. Available from: http://hdl.handle.net/1853/24787.

Council of Science Editors:

Heffernan MJ. Biodegradable polymeric delivery systems for protein subunit vaccines. [Doctoral Dissertation]. Georgia Tech; 2008. Available from: http://hdl.handle.net/1853/24787


Georgia Tech

2. Rose, Stacey Loren. In Vitro Model of Vascular Healing in the Presence of Biomaterials.

Degree: PhD, Biomedical Engineering, 2006, Georgia Tech

Coronary artery stent placement has been a significant advance in the percutaneous treatment of atherosclerotic disease, and tissue engineered vascular grafts may provide a viable alternative to autologous segments for small diameter vessels. However, in-stent restenosis remains an important limitation, and tissue engineered grafts have poor patency and high risk of thrombus formation due to their inability to maintain a confluent, adherent, and quiescent endothelium. While animal models provide insight into the pathophysiology of these situations, elucidation of the relative importance of stent or graft components, hemodynamic factors, and molecular factors is difficult. Very little research has focused on bridging gaps in knowledge concerning blood/biomaterial interactions, blood/endothelial cell interactions, and endothelial cell/smooth muscle cell cross-talk. The work presented within this thesis will do just that. The objective of this thesis research was to elucidate the influence of biomaterial-induced activation of leukocytes on endothelial cell or smooth muscle cell phenotype, as well as endothelial cell/smooth muscle cell cross-talk in co-culture systems. Towards this goal, two complimentary in vitro endothelial cell/smooth muscle cell co-culture models with divergent smooth muscle cell phenotype were developed and characterized. Using these systems, it was found that the presence of more secretory smooth muscle cells (as would be seen in wound healing or disease) in general enhanced endothelial cell activation in response to biomaterial-pretreated monocytes, while the presence of less secretory smooth muscle cells (to model more quiescent smooth muscle cells found in uninjured healthy vessels) suppressed endothelial cell activation in response to biomaterial-pretreated monocytes (and neutrophils to a small degree). Additionally, biomaterial-pretreated monocytes and neutrophils amplified a smooth muscle cell phenotypic shift away from a more quiescent state. It is likely that the compounding effect of secretory smooth muscle cells and biomaterial-activated leukocytes are responsible for altered vascular wound healing upon implantation of stents or vascular grafts. Understanding the specific signals causing these effects, or signals delivered by contractile smooth muscle cells that limit these effects help to provide design criteria for development of devices or grafts capable of long term patency. Advisors/Committee Members: Dr. Julia Babensee (Committee Chair), Dr. Elliot Chaikof (Committee Member), Dr. Hanjoong Jo (Committee Member), Dr. Michael Sefton (Committee Member), Dr. Robert Nerem (Committee Member), Dr. Suzanne Eskin (Committee Member).

Subjects/Keywords: Biomaterials; Leukocytes; Smooth muscle cells; Endothelial cells; Stents (Surgery); Vascular endothelial growth factors; Biocompatibility; Leucocytes; Regeneration (Biology)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rose, S. L. (2006). In Vitro Model of Vascular Healing in the Presence of Biomaterials. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/13955

Chicago Manual of Style (16th Edition):

Rose, Stacey Loren. “In Vitro Model of Vascular Healing in the Presence of Biomaterials.” 2006. Doctoral Dissertation, Georgia Tech. Accessed January 16, 2021. http://hdl.handle.net/1853/13955.

MLA Handbook (7th Edition):

Rose, Stacey Loren. “In Vitro Model of Vascular Healing in the Presence of Biomaterials.” 2006. Web. 16 Jan 2021.

Vancouver:

Rose SL. In Vitro Model of Vascular Healing in the Presence of Biomaterials. [Internet] [Doctoral dissertation]. Georgia Tech; 2006. [cited 2021 Jan 16]. Available from: http://hdl.handle.net/1853/13955.

Council of Science Editors:

Rose SL. In Vitro Model of Vascular Healing in the Presence of Biomaterials. [Doctoral Dissertation]. Georgia Tech; 2006. Available from: http://hdl.handle.net/1853/13955

.