Advanced search options
You searched for +publisher:"ETH Zürich" +contributor:("Salamon, Dietmar")
.
Showing records 1 – 21 of
21 total matches.
▼ Search Limiters
ETH Zürich
1. Antony, Charel. Gradient Trajectories Near Real And Complex A2-singularities.
Degree: 2018, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/284182
Subjects/Keywords: Birth-death; Critical point; Gradient flow; A_2 singularity; vanishing cycles; Whitney Lemma; Adiabatic Limit; Conley Index Pair; Existence and uniqueness of solutions; info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Antony, C. (2018). Gradient Trajectories Near Real And Complex A2-singularities. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/284182
Chicago Manual of Style (16th Edition):
Antony, Charel. “Gradient Trajectories Near Real And Complex A2-singularities.” 2018. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/284182.
MLA Handbook (7th Edition):
Antony, Charel. “Gradient Trajectories Near Real And Complex A2-singularities.” 2018. Web. 16 Apr 2021.
Vancouver:
Antony C. Gradient Trajectories Near Real And Complex A2-singularities. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/284182.
Council of Science Editors:
Antony C. Gradient Trajectories Near Real And Complex A2-singularities. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/284182
ETH Zürich
2. Trautwein, Samuel. Infinite dimensional GIT and moment maps in differential geometry.
Degree: 2018, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/281862
Subjects/Keywords: differential geometry; moment map; geometric invariant theory; Yang-Mills equation; vortex equation; Teichmüller theory; info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Trautwein, S. (2018). Infinite dimensional GIT and moment maps in differential geometry. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/281862
Chicago Manual of Style (16th Edition):
Trautwein, Samuel. “Infinite dimensional GIT and moment maps in differential geometry.” 2018. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/281862.
MLA Handbook (7th Edition):
Trautwein, Samuel. “Infinite dimensional GIT and moment maps in differential geometry.” 2018. Web. 16 Apr 2021.
Vancouver:
Trautwein S. Infinite dimensional GIT and moment maps in differential geometry. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/281862.
Council of Science Editors:
Trautwein S. Infinite dimensional GIT and moment maps in differential geometry. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/281862
ETH Zürich
3. Gautschi, Ralf. Floer homology and surface diffeomorphisms.
Degree: 2002, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/146167
Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); MONODROMIEGRUPPEN (ALGEBRA); HOMOLOGIE TOPOLOGISCHER RÄUME UND STETIGER ABBILDUNGEN (ALGEBRAISCHE TOPOLOGIE); SINGULARITÄTEN ALGEBRAISCHER VARIETÄTEN (ALGEBRAISCHE GEOMETRIE); FLÄCHENKURVEN (DIFFERENTIALGEOMETRIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); MONODROMY GROUPS (ALGEBRA); HOMOLOGY OF TOPOLOGICAL SPACES AND CONTINUOUS MAPPINGS (ALGEBRAIC TOPOLOGY); SINGULARITIES OF ALGEBRAIC VARIETIES (ALGEBRAIC GEOMETRY); SURFACE CURVES (DIFFERENTIAL GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Gautschi, R. (2002). Floer homology and surface diffeomorphisms. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/146167
Chicago Manual of Style (16th Edition):
Gautschi, Ralf. “Floer homology and surface diffeomorphisms.” 2002. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/146167.
MLA Handbook (7th Edition):
Gautschi, Ralf. “Floer homology and surface diffeomorphisms.” 2002. Web. 16 Apr 2021.
Vancouver:
Gautschi R. Floer homology and surface diffeomorphisms. [Internet] [Doctoral dissertation]. ETH Zürich; 2002. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/146167.
Council of Science Editors:
Gautschi R. Floer homology and surface diffeomorphisms. [Doctoral Dissertation]. ETH Zürich; 2002. Available from: http://hdl.handle.net/20.500.11850/146167
ETH Zürich
4. Swoboda, Jan. The Yang-Mills gradient flow and loop groups.
Degree: 2009, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/151201
Subjects/Keywords: YANG-MILLS-GLEICHUNGEN (TOPOLOGIE DER MANNIGFALTIGKEITEN); SCHLEIFEN (ALGEBRA); MODULRÄUME (ALGEBRAISCHE GEOMETRIE); MORSETHEORIE (TOPOLOGIE DER MANNIGFALTIGKEITEN); YANG-MILLS EQUATIONS (TOPOLOGY OF MANIFOLDS); LOOPS (ALGEBRA); MODULI SPACES (ALGEBRAIC GEOMETRY); MORSE THEORY (TOPOLOGY OF MANIFOLDS); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Swoboda, J. (2009). The Yang-Mills gradient flow and loop groups. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/151201
Chicago Manual of Style (16th Edition):
Swoboda, Jan. “The Yang-Mills gradient flow and loop groups.” 2009. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/151201.
MLA Handbook (7th Edition):
Swoboda, Jan. “The Yang-Mills gradient flow and loop groups.” 2009. Web. 16 Apr 2021.
Vancouver:
Swoboda J. The Yang-Mills gradient flow and loop groups. [Internet] [Doctoral dissertation]. ETH Zürich; 2009. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/151201.
Council of Science Editors:
Swoboda J. The Yang-Mills gradient flow and loop groups. [Doctoral Dissertation]. ETH Zürich; 2009. Available from: http://hdl.handle.net/20.500.11850/151201
ETH Zürich
5. Haug, Luis. On Lagrangian quantum homology and Lagrangian cobordisms.
Degree: 2014, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/154582
Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); LAGRANGE-MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); QUANTENKOHOMOLOGIE (ALGEBRAISCHE TOPOLOGIE); BORDISMUS + KOBORDISMUS (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); LAGRANGE MANIFOLDS (DIFFERENTIAL GEOMETRY); QUANTUM COHOMOLOGY (ALGEBRAIC TOPOLOGY); BORDISM + COBORDISM (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Haug, L. (2014). On Lagrangian quantum homology and Lagrangian cobordisms. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/154582
Chicago Manual of Style (16th Edition):
Haug, Luis. “On Lagrangian quantum homology and Lagrangian cobordisms.” 2014. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/154582.
MLA Handbook (7th Edition):
Haug, Luis. “On Lagrangian quantum homology and Lagrangian cobordisms.” 2014. Web. 16 Apr 2021.
Vancouver:
Haug L. On Lagrangian quantum homology and Lagrangian cobordisms. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/154582.
Council of Science Editors:
Haug L. On Lagrangian quantum homology and Lagrangian cobordisms. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/154582
ETH Zürich
6. Akveld, Meike. Hofer geometry for Lagrangian loops, a Legendrian knot and a travelling wave.
Degree: 2000, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/145152
Subjects/Keywords: INVARIANTE OBJEKTE IN RIEMANNSCHEN RÄUMEN (DIFFERENTIALGEOMETRIE); ISOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); INVARIANT OBJECTS IN RIEMANNIAN SPACES (DIFFERENTIAL GEOMETRY); ISOTOPY THEORY (ALGEBRAIC TOPOLOGY); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Akveld, M. (2000). Hofer geometry for Lagrangian loops, a Legendrian knot and a travelling wave. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/145152
Chicago Manual of Style (16th Edition):
Akveld, Meike. “Hofer geometry for Lagrangian loops, a Legendrian knot and a travelling wave.” 2000. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/145152.
MLA Handbook (7th Edition):
Akveld, Meike. “Hofer geometry for Lagrangian loops, a Legendrian knot and a travelling wave.” 2000. Web. 16 Apr 2021.
Vancouver:
Akveld M. Hofer geometry for Lagrangian loops, a Legendrian knot and a travelling wave. [Internet] [Doctoral dissertation]. ETH Zürich; 2000. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/145152.
Council of Science Editors:
Akveld M. Hofer geometry for Lagrangian loops, a Legendrian knot and a travelling wave. [Doctoral Dissertation]. ETH Zürich; 2000. Available from: http://hdl.handle.net/20.500.11850/145152
ETH Zürich
7. Frauenfelder, Urs. Floer homology of symplectic quotients and the Arnold-Givental conjecture.
Degree: 2003, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/147212
Subjects/Keywords: HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); LAGRANGE-MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); LAGRANGE MANIFOLDS (DIFFERENTIAL GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Frauenfelder, U. (2003). Floer homology of symplectic quotients and the Arnold-Givental conjecture. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/147212
Chicago Manual of Style (16th Edition):
Frauenfelder, Urs. “Floer homology of symplectic quotients and the Arnold-Givental conjecture.” 2003. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/147212.
MLA Handbook (7th Edition):
Frauenfelder, Urs. “Floer homology of symplectic quotients and the Arnold-Givental conjecture.” 2003. Web. 16 Apr 2021.
Vancouver:
Frauenfelder U. Floer homology of symplectic quotients and the Arnold-Givental conjecture. [Internet] [Doctoral dissertation]. ETH Zürich; 2003. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/147212.
Council of Science Editors:
Frauenfelder U. Floer homology of symplectic quotients and the Arnold-Givental conjecture. [Doctoral Dissertation]. ETH Zürich; 2003. Available from: http://hdl.handle.net/20.500.11850/147212
ETH Zürich
8. Schlenk, Felix. Embedding problems in symplectic geometry.
Degree: 2001, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/145430
Subjects/Keywords: SYMPLEKTISCHE GEOMETRIE; GLATTE UND STÜCKWEISE LINEARE EINBETTUNGEN (TOPOLOGIE DER MANNIGFALTIGKEITEN); ELLIPSOIDE (GEOMETRIE); SYMPLECTIC GEOMETRY; SMOOTH AND PIECEWISE LINEAR EMBEDDINGS (TOPOLOGY OF MANIFOLDS); ELLIPSOIDS (GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Schlenk, F. (2001). Embedding problems in symplectic geometry. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/145430
Chicago Manual of Style (16th Edition):
Schlenk, Felix. “Embedding problems in symplectic geometry.” 2001. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/145430.
MLA Handbook (7th Edition):
Schlenk, Felix. “Embedding problems in symplectic geometry.” 2001. Web. 16 Apr 2021.
Vancouver:
Schlenk F. Embedding problems in symplectic geometry. [Internet] [Doctoral dissertation]. ETH Zürich; 2001. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/145430.
Council of Science Editors:
Schlenk F. Embedding problems in symplectic geometry. [Doctoral Dissertation]. ETH Zürich; 2001. Available from: http://hdl.handle.net/20.500.11850/145430
ETH Zürich
9. Wehrheim, Katrin. Anti-self-dual instantons with Lagrangian boundary conditions.
Degree: 2002, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/146991
Subjects/Keywords: VIERDIMENSIONALE MANNIGFALTIGKEITEN (TOPOLOGIE); INSTANTON (THEORETISCHE PHYSIK); HOMOLOGIETHEORIE + DUALITÄTSTHEOREME (ALGEBRAISCHE TOPOLOGIE); CAUCHY-RIEMANNSCHE DIFFERENTIALGLEICHUNGEN (ANALYSIS); NORMIERTE RÄUME + BANACHRÄUME + HILBERTRÄUME (FUNKTIONALANALYSIS); FOUR-DIMENSIONAL MANIFOLDS (TOPOLOGY); INSTANTON (THEORETICAL PHYSICS); HOMOLOGY THEORY + DUALITY THEOREMS (ALGEBRAIC TOPOLOGY); CAUCHY-RIEMANN DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS); NORMED SPACES + BANACH SPACES + HILBERT SPACES (FUNCTIONAL ANALYSIS); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Wehrheim, K. (2002). Anti-self-dual instantons with Lagrangian boundary conditions. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/146991
Chicago Manual of Style (16th Edition):
Wehrheim, Katrin. “Anti-self-dual instantons with Lagrangian boundary conditions.” 2002. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/146991.
MLA Handbook (7th Edition):
Wehrheim, Katrin. “Anti-self-dual instantons with Lagrangian boundary conditions.” 2002. Web. 16 Apr 2021.
Vancouver:
Wehrheim K. Anti-self-dual instantons with Lagrangian boundary conditions. [Internet] [Doctoral dissertation]. ETH Zürich; 2002. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/146991.
Council of Science Editors:
Wehrheim K. Anti-self-dual instantons with Lagrangian boundary conditions. [Doctoral Dissertation]. ETH Zürich; 2002. Available from: http://hdl.handle.net/20.500.11850/146991
ETH Zürich
10. Ziltener, Fabian. Symplectic vortices on the complex plane and quantum cohomology.
Degree: 2006, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/149209
Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); KOMPAKTE LIE-GRUPPEN UND KOMPAKTE LIE-ALGEBREN; QUANTENKOHOMOLOGIE (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); COMPACT LIE GROUPS AND COMPACT LIE ALGEBRAS; QUANTUM COHOMOLOGY (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Ziltener, F. (2006). Symplectic vortices on the complex plane and quantum cohomology. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/149209
Chicago Manual of Style (16th Edition):
Ziltener, Fabian. “Symplectic vortices on the complex plane and quantum cohomology.” 2006. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/149209.
MLA Handbook (7th Edition):
Ziltener, Fabian. “Symplectic vortices on the complex plane and quantum cohomology.” 2006. Web. 16 Apr 2021.
Vancouver:
Ziltener F. Symplectic vortices on the complex plane and quantum cohomology. [Internet] [Doctoral dissertation]. ETH Zürich; 2006. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/149209.
Council of Science Editors:
Ziltener F. Symplectic vortices on the complex plane and quantum cohomology. [Doctoral Dissertation]. ETH Zürich; 2006. Available from: http://hdl.handle.net/20.500.11850/149209
ETH Zürich
11. Ott, Andreas Michael Johannes. The non-local sympletic vortex equations and gauged Gromov-Witten invariants.
Degree: 2010, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/152597
Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); KOMPAKTE LIE-GRUPPEN UND KOMPAKTE LIE-ALGEBREN; GRUPPENOPERATIONEN (ALGEBRA); INVARIANTENTHEORIE (ALGEBRAISCHE GEOMETRIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); COMPACT LIE GROUPS AND COMPACT LIE ALGEBRAS; GROUP ACTIONS (ALGEBRA); INVARIANT THEORY (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Ott, A. M. J. (2010). The non-local sympletic vortex equations and gauged Gromov-Witten invariants. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/152597
Chicago Manual of Style (16th Edition):
Ott, Andreas Michael Johannes. “The non-local sympletic vortex equations and gauged Gromov-Witten invariants.” 2010. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/152597.
MLA Handbook (7th Edition):
Ott, Andreas Michael Johannes. “The non-local sympletic vortex equations and gauged Gromov-Witten invariants.” 2010. Web. 16 Apr 2021.
Vancouver:
Ott AMJ. The non-local sympletic vortex equations and gauged Gromov-Witten invariants. [Internet] [Doctoral dissertation]. ETH Zürich; 2010. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/152597.
Council of Science Editors:
Ott AMJ. The non-local sympletic vortex equations and gauged Gromov-Witten invariants. [Doctoral Dissertation]. ETH Zürich; 2010. Available from: http://hdl.handle.net/20.500.11850/152597
ETH Zürich
12. Jerby, Yochai. Deformation and duality from the symplectic point of view.
Degree: 2012, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/153324
Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); KÄHLER-MANNIGFALTIGKEITEN (TOPOLOGIE); HOMOLOGIETHEORIE + DUALITÄTSTHEOREME (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); KÄHLER MANIFOLDS (TOPOLOGY); HOMOLOGY THEORY + DUALITY THEOREMS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Jerby, Y. (2012). Deformation and duality from the symplectic point of view. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/153324
Chicago Manual of Style (16th Edition):
Jerby, Yochai. “Deformation and duality from the symplectic point of view.” 2012. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/153324.
MLA Handbook (7th Edition):
Jerby, Yochai. “Deformation and duality from the symplectic point of view.” 2012. Web. 16 Apr 2021.
Vancouver:
Jerby Y. Deformation and duality from the symplectic point of view. [Internet] [Doctoral dissertation]. ETH Zürich; 2012. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/153324.
Council of Science Editors:
Jerby Y. Deformation and duality from the symplectic point of view. [Doctoral Dissertation]. ETH Zürich; 2012. Available from: http://hdl.handle.net/20.500.11850/153324
ETH Zürich
13. Komani, Driton. Continuation maps in Morse theory.
Degree: 2012, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/153918
Subjects/Keywords: MORSETHEORIE (TOPOLOGIE DER MANNIGFALTIGKEITEN); MORSE THEORY (TOPOLOGY OF MANIFOLDS); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Komani, D. (2012). Continuation maps in Morse theory. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/153918
Chicago Manual of Style (16th Edition):
Komani, Driton. “Continuation maps in Morse theory.” 2012. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/153918.
MLA Handbook (7th Edition):
Komani, Driton. “Continuation maps in Morse theory.” 2012. Web. 16 Apr 2021.
Vancouver:
Komani D. Continuation maps in Morse theory. [Internet] [Doctoral dissertation]. ETH Zürich; 2012. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/153918.
Council of Science Editors:
Komani D. Continuation maps in Morse theory. [Doctoral Dissertation]. ETH Zürich; 2012. Available from: http://hdl.handle.net/20.500.11850/153918
ETH Zürich
14. Membrez, Cedric. Quantum invariants and Lagrangian topology.
Degree: 2014, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/97458
Subjects/Keywords: HOMOLOGIETHEORIE + DUALITÄTSTHEOREME (ALGEBRAISCHE TOPOLOGIE); TOPOLOGIE (MATHEMATIK); TOPOLOGY (MATHEMATICS); DIFFERENTIALGEOMETRIE IN SYMPLEKTISCHEN RÄUMEN; HOMOLOGY THEORY + DUALITY THEOREMS (ALGEBRAIC TOPOLOGY); DIFFERENTIAL GEOMETRY IN SYMPLECTIC SPACES; info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Membrez, C. (2014). Quantum invariants and Lagrangian topology. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/97458
Chicago Manual of Style (16th Edition):
Membrez, Cedric. “Quantum invariants and Lagrangian topology.” 2014. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/97458.
MLA Handbook (7th Edition):
Membrez, Cedric. “Quantum invariants and Lagrangian topology.” 2014. Web. 16 Apr 2021.
Vancouver:
Membrez C. Quantum invariants and Lagrangian topology. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/97458.
Council of Science Editors:
Membrez C. Quantum invariants and Lagrangian topology. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/97458
ETH Zürich
15. Simčević, Tatjana. A Hardy Space Approach to Lagrangian Floer gluing.
Degree: 2014, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/91495
Subjects/Keywords: INTERSECTION THEORY (ALGEBRAIC GEOMETRY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); SCHNITT-THEORIE (ALGEBRAISCHE GEOMETRIE); MODULI SPACES (ALGEBRAIC GEOMETRY); HARDYRÄUME + HARDYKLASSEN (FUNKTIONALANALYSIS); HARDY SPACES + HARDY CLASSES (FUNCTIONAL ANALYSIS); MODULRÄUME (ALGEBRAISCHE GEOMETRIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Simčević, T. (2014). A Hardy Space Approach to Lagrangian Floer gluing. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/91495
Chicago Manual of Style (16th Edition):
Simčević, Tatjana. “A Hardy Space Approach to Lagrangian Floer gluing.” 2014. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/91495.
MLA Handbook (7th Edition):
Simčević, Tatjana. “A Hardy Space Approach to Lagrangian Floer gluing.” 2014. Web. 16 Apr 2021.
Vancouver:
Simčević T. A Hardy Space Approach to Lagrangian Floer gluing. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/91495.
Council of Science Editors:
Simčević T. A Hardy Space Approach to Lagrangian Floer gluing. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/91495
16. Uljarevic, Igor. A symplectic homology theory for automorphisms of Liouville domains.
Degree: 2016, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/116784
Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Uljarevic, I. (2016). A symplectic homology theory for automorphisms of Liouville domains. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/116784
Chicago Manual of Style (16th Edition):
Uljarevic, Igor. “A symplectic homology theory for automorphisms of Liouville domains.” 2016. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/116784.
MLA Handbook (7th Edition):
Uljarevic, Igor. “A symplectic homology theory for automorphisms of Liouville domains.” 2016. Web. 16 Apr 2021.
Vancouver:
Uljarevic I. A symplectic homology theory for automorphisms of Liouville domains. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/116784.
Council of Science Editors:
Uljarevic I. A symplectic homology theory for automorphisms of Liouville domains. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/116784
ETH Zürich
17. Borer, Franziska. Weak Solutions for the Ricci Flow on Closed Surfaces and Prescribed Curvature Problems.
Degree: 2016, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/122445
Subjects/Keywords: RIEMANNIAN MANIFOLDS (TOPOLOGY); KRÜMMUNGSFLUSS (DIFFERENTIALGEOMETRIE); RIEMANNSCHE MANNIGFALTIGKEITEN (TOPOLOGIE); HARMONISCHE FUNKTIONEN AUF RIEMANNSCHEN MANNIGFALTIGKEITEN (ANALYSIS); HARMONIC FUNCTIONS ON RIEMANNIAN MANIFOLDS (MATHEMATICAL ANALYSIS); CURVE SHORTENING FLOW (DIFFERENTIAL GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Borer, F. (2016). Weak Solutions for the Ricci Flow on Closed Surfaces and Prescribed Curvature Problems. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/122445
Chicago Manual of Style (16th Edition):
Borer, Franziska. “Weak Solutions for the Ricci Flow on Closed Surfaces and Prescribed Curvature Problems.” 2016. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/122445.
MLA Handbook (7th Edition):
Borer, Franziska. “Weak Solutions for the Ricci Flow on Closed Surfaces and Prescribed Curvature Problems.” 2016. Web. 16 Apr 2021.
Vancouver:
Borer F. Weak Solutions for the Ricci Flow on Closed Surfaces and Prescribed Curvature Problems. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/122445.
Council of Science Editors:
Borer F. Weak Solutions for the Ricci Flow on Closed Surfaces and Prescribed Curvature Problems. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/122445
18. Krom, Robin Sebastian. The Donaldson Geometric Flow.
Degree: 2016, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/115920
Subjects/Keywords: FOUR-DIMENSIONAL MANIFOLDS (TOPOLOGY); VIERDIMENSIONALE MANNIGFALTIGKEITEN (TOPOLOGIE); SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); FLUSS (DYNAMISCHE SYSTEME); FLOW (DYNAMICAL SYSTEMS); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Krom, R. S. (2016). The Donaldson Geometric Flow. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/115920
Chicago Manual of Style (16th Edition):
Krom, Robin Sebastian. “The Donaldson Geometric Flow.” 2016. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/115920.
MLA Handbook (7th Edition):
Krom, Robin Sebastian. “The Donaldson Geometric Flow.” 2016. Web. 16 Apr 2021.
Vancouver:
Krom RS. The Donaldson Geometric Flow. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/115920.
Council of Science Editors:
Krom RS. The Donaldson Geometric Flow. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/115920
ETH Zürich
19. Janner, Remi. Morse homology of the loop space on the moduli space of flat connections and Yang-Mills theory.
Degree: 2010, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/152095
Subjects/Keywords: MORSETHEORIE (TOPOLOGIE DER MANNIGFALTIGKEITEN); GEODÄTISCHE FLÜSSE (DIFFERENTIALGEOMETRIE); RÄUME MIT MULTIPLIKATION (ALGEBRAISCHE TOPOLOGIE); MODULRÄUME (ALGEBRAISCHE GEOMETRIE); YANG-MILLS-GLEICHUNGEN (TOPOLOGIE DER MANNIGFALTIGKEITEN); MORSE THEORY (TOPOLOGY OF MANIFOLDS); GEODESIC FLOWS (DIFFERENTIAL GEOMETRY); SPACES WITH MULTIPLICATION (ALGEBRAIC TOPOLOGY); MODULI SPACES (ALGEBRAIC GEOMETRY); YANG-MILLS EQUATIONS (TOPOLOGY OF MANIFOLDS); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Janner, R. (2010). Morse homology of the loop space on the moduli space of flat connections and Yang-Mills theory. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/152095
Chicago Manual of Style (16th Edition):
Janner, Remi. “Morse homology of the loop space on the moduli space of flat connections and Yang-Mills theory.” 2010. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/152095.
MLA Handbook (7th Edition):
Janner, Remi. “Morse homology of the loop space on the moduli space of flat connections and Yang-Mills theory.” 2010. Web. 16 Apr 2021.
Vancouver:
Janner R. Morse homology of the loop space on the moduli space of flat connections and Yang-Mills theory. [Internet] [Doctoral dissertation]. ETH Zürich; 2010. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/152095.
Council of Science Editors:
Janner R. Morse homology of the loop space on the moduli space of flat connections and Yang-Mills theory. [Doctoral Dissertation]. ETH Zürich; 2010. Available from: http://hdl.handle.net/20.500.11850/152095
20. Hensel, Felix. Stability Conditions and Lagrangian Cobordisms.
Degree: 2018, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/281401
Subjects/Keywords: Symplectic geometry; Lagrangian cobordisms; info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Hensel, F. (2018). Stability Conditions and Lagrangian Cobordisms. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/281401
Chicago Manual of Style (16th Edition):
Hensel, Felix. “Stability Conditions and Lagrangian Cobordisms.” 2018. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/281401.
MLA Handbook (7th Edition):
Hensel, Felix. “Stability Conditions and Lagrangian Cobordisms.” 2018. Web. 16 Apr 2021.
Vancouver:
Hensel F. Stability Conditions and Lagrangian Cobordisms. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/281401.
Council of Science Editors:
Hensel F. Stability Conditions and Lagrangian Cobordisms. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/281401
ETH Zürich
21. Georgoulas, Valentina Maria. A differential geometric approach to GIT and stability.
Degree: 2016, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/155993
Subjects/Keywords: ALGEBRAISCHE VARIETÄTEN (PROJEKTIVE GEOMETRIE); REDUZIERBARE GRUPPEN (ALGEBRAISCHE GEOMETRIE); GRUPPENOPERATIONEN (ALGEBRA); HOLOMORPHE VEKTORBÜNDEL (ANALYTISCHE RÄUME); ALGEBRAIC VARIETIES (PROJECTIVE GEOMETRY); REDUCTIVE GROUPS (ALGEBRAIC GEOMETRY); GROUP ACTIONS (ALGEBRA); HOLOMORPHIC VECTOR BUNDLES (ANALYTIC SPACES); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Georgoulas, V. M. (2016). A differential geometric approach to GIT and stability. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/155993
Chicago Manual of Style (16th Edition):
Georgoulas, Valentina Maria. “A differential geometric approach to GIT and stability.” 2016. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/155993.
MLA Handbook (7th Edition):
Georgoulas, Valentina Maria. “A differential geometric approach to GIT and stability.” 2016. Web. 16 Apr 2021.
Vancouver:
Georgoulas VM. A differential geometric approach to GIT and stability. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/155993.
Council of Science Editors:
Georgoulas VM. A differential geometric approach to GIT and stability. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/155993