Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"ETH Zürich" +contributor:("Salamon, Dietmar"). Showing records 1 – 21 of 21 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


ETH Zürich

1. Antony, Charel. Gradient Trajectories Near Real And Complex A2-singularities.

Degree: 2018, ETH Zürich

 In this thesis, the existence and uniqueness of gradient trajectories near an A2-singularity are analysed. The A2-singularity is called a birth-death critical point in the… (more)

Subjects/Keywords: Birth-death; Critical point; Gradient flow; A_2 singularity; vanishing cycles; Whitney Lemma; Adiabatic Limit; Conley Index Pair; Existence and uniqueness of solutions; info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Antony, C. (2018). Gradient Trajectories Near Real And Complex A2-singularities. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/284182

Chicago Manual of Style (16th Edition):

Antony, Charel. “Gradient Trajectories Near Real And Complex A2-singularities.” 2018. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/284182.

MLA Handbook (7th Edition):

Antony, Charel. “Gradient Trajectories Near Real And Complex A2-singularities.” 2018. Web. 16 Apr 2021.

Vancouver:

Antony C. Gradient Trajectories Near Real And Complex A2-singularities. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/284182.

Council of Science Editors:

Antony C. Gradient Trajectories Near Real And Complex A2-singularities. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/284182


ETH Zürich

2. Trautwein, Samuel. Infinite dimensional GIT and moment maps in differential geometry.

Degree: 2018, ETH Zürich

 The starting point of this thesis is the following observation of Atiyah and Bott: The curvature of a connection on a bundle over a surface… (more)

Subjects/Keywords: differential geometry; moment map; geometric invariant theory; Yang-Mills equation; vortex equation; Teichmüller theory; info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Trautwein, S. (2018). Infinite dimensional GIT and moment maps in differential geometry. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/281862

Chicago Manual of Style (16th Edition):

Trautwein, Samuel. “Infinite dimensional GIT and moment maps in differential geometry.” 2018. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/281862.

MLA Handbook (7th Edition):

Trautwein, Samuel. “Infinite dimensional GIT and moment maps in differential geometry.” 2018. Web. 16 Apr 2021.

Vancouver:

Trautwein S. Infinite dimensional GIT and moment maps in differential geometry. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/281862.

Council of Science Editors:

Trautwein S. Infinite dimensional GIT and moment maps in differential geometry. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/281862


ETH Zürich

3. Gautschi, Ralf. Floer homology and surface diffeomorphisms.

Degree: 2002, ETH Zürich

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); MONODROMIEGRUPPEN (ALGEBRA); HOMOLOGIE TOPOLOGISCHER RÄUME UND STETIGER ABBILDUNGEN (ALGEBRAISCHE TOPOLOGIE); SINGULARITÄTEN ALGEBRAISCHER VARIETÄTEN (ALGEBRAISCHE GEOMETRIE); FLÄCHENKURVEN (DIFFERENTIALGEOMETRIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); MONODROMY GROUPS (ALGEBRA); HOMOLOGY OF TOPOLOGICAL SPACES AND CONTINUOUS MAPPINGS (ALGEBRAIC TOPOLOGY); SINGULARITIES OF ALGEBRAIC VARIETIES (ALGEBRAIC GEOMETRY); SURFACE CURVES (DIFFERENTIAL GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gautschi, R. (2002). Floer homology and surface diffeomorphisms. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/146167

Chicago Manual of Style (16th Edition):

Gautschi, Ralf. “Floer homology and surface diffeomorphisms.” 2002. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/146167.

MLA Handbook (7th Edition):

Gautschi, Ralf. “Floer homology and surface diffeomorphisms.” 2002. Web. 16 Apr 2021.

Vancouver:

Gautschi R. Floer homology and surface diffeomorphisms. [Internet] [Doctoral dissertation]. ETH Zürich; 2002. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/146167.

Council of Science Editors:

Gautschi R. Floer homology and surface diffeomorphisms. [Doctoral Dissertation]. ETH Zürich; 2002. Available from: http://hdl.handle.net/20.500.11850/146167


ETH Zürich

4. Swoboda, Jan. The Yang-Mills gradient flow and loop groups.

Degree: 2009, ETH Zürich

Subjects/Keywords: YANG-MILLS-GLEICHUNGEN (TOPOLOGIE DER MANNIGFALTIGKEITEN); SCHLEIFEN (ALGEBRA); MODULRÄUME (ALGEBRAISCHE GEOMETRIE); MORSETHEORIE (TOPOLOGIE DER MANNIGFALTIGKEITEN); YANG-MILLS EQUATIONS (TOPOLOGY OF MANIFOLDS); LOOPS (ALGEBRA); MODULI SPACES (ALGEBRAIC GEOMETRY); MORSE THEORY (TOPOLOGY OF MANIFOLDS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Swoboda, J. (2009). The Yang-Mills gradient flow and loop groups. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/151201

Chicago Manual of Style (16th Edition):

Swoboda, Jan. “The Yang-Mills gradient flow and loop groups.” 2009. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/151201.

MLA Handbook (7th Edition):

Swoboda, Jan. “The Yang-Mills gradient flow and loop groups.” 2009. Web. 16 Apr 2021.

Vancouver:

Swoboda J. The Yang-Mills gradient flow and loop groups. [Internet] [Doctoral dissertation]. ETH Zürich; 2009. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/151201.

Council of Science Editors:

Swoboda J. The Yang-Mills gradient flow and loop groups. [Doctoral Dissertation]. ETH Zürich; 2009. Available from: http://hdl.handle.net/20.500.11850/151201


ETH Zürich

5. Haug, Luis. On Lagrangian quantum homology and Lagrangian cobordisms.

Degree: 2014, ETH Zürich

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); LAGRANGE-MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); QUANTENKOHOMOLOGIE (ALGEBRAISCHE TOPOLOGIE); BORDISMUS + KOBORDISMUS (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); LAGRANGE MANIFOLDS (DIFFERENTIAL GEOMETRY); QUANTUM COHOMOLOGY (ALGEBRAIC TOPOLOGY); BORDISM + COBORDISM (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Haug, L. (2014). On Lagrangian quantum homology and Lagrangian cobordisms. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/154582

Chicago Manual of Style (16th Edition):

Haug, Luis. “On Lagrangian quantum homology and Lagrangian cobordisms.” 2014. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/154582.

MLA Handbook (7th Edition):

Haug, Luis. “On Lagrangian quantum homology and Lagrangian cobordisms.” 2014. Web. 16 Apr 2021.

Vancouver:

Haug L. On Lagrangian quantum homology and Lagrangian cobordisms. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/154582.

Council of Science Editors:

Haug L. On Lagrangian quantum homology and Lagrangian cobordisms. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/154582


ETH Zürich

6. Akveld, Meike. Hofer geometry for Lagrangian loops, a Legendrian knot and a travelling wave.

Degree: 2000, ETH Zürich

Subjects/Keywords: INVARIANTE OBJEKTE IN RIEMANNSCHEN RÄUMEN (DIFFERENTIALGEOMETRIE); ISOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); INVARIANT OBJECTS IN RIEMANNIAN SPACES (DIFFERENTIAL GEOMETRY); ISOTOPY THEORY (ALGEBRAIC TOPOLOGY); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Akveld, M. (2000). Hofer geometry for Lagrangian loops, a Legendrian knot and a travelling wave. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/145152

Chicago Manual of Style (16th Edition):

Akveld, Meike. “Hofer geometry for Lagrangian loops, a Legendrian knot and a travelling wave.” 2000. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/145152.

MLA Handbook (7th Edition):

Akveld, Meike. “Hofer geometry for Lagrangian loops, a Legendrian knot and a travelling wave.” 2000. Web. 16 Apr 2021.

Vancouver:

Akveld M. Hofer geometry for Lagrangian loops, a Legendrian knot and a travelling wave. [Internet] [Doctoral dissertation]. ETH Zürich; 2000. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/145152.

Council of Science Editors:

Akveld M. Hofer geometry for Lagrangian loops, a Legendrian knot and a travelling wave. [Doctoral Dissertation]. ETH Zürich; 2000. Available from: http://hdl.handle.net/20.500.11850/145152


ETH Zürich

7. Frauenfelder, Urs. Floer homology of symplectic quotients and the Arnold-Givental conjecture.

Degree: 2003, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); LAGRANGE-MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); LAGRANGE MANIFOLDS (DIFFERENTIAL GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Frauenfelder, U. (2003). Floer homology of symplectic quotients and the Arnold-Givental conjecture. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/147212

Chicago Manual of Style (16th Edition):

Frauenfelder, Urs. “Floer homology of symplectic quotients and the Arnold-Givental conjecture.” 2003. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/147212.

MLA Handbook (7th Edition):

Frauenfelder, Urs. “Floer homology of symplectic quotients and the Arnold-Givental conjecture.” 2003. Web. 16 Apr 2021.

Vancouver:

Frauenfelder U. Floer homology of symplectic quotients and the Arnold-Givental conjecture. [Internet] [Doctoral dissertation]. ETH Zürich; 2003. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/147212.

Council of Science Editors:

Frauenfelder U. Floer homology of symplectic quotients and the Arnold-Givental conjecture. [Doctoral Dissertation]. ETH Zürich; 2003. Available from: http://hdl.handle.net/20.500.11850/147212


ETH Zürich

8. Schlenk, Felix. Embedding problems in symplectic geometry.

Degree: 2001, ETH Zürich

Subjects/Keywords: SYMPLEKTISCHE GEOMETRIE; GLATTE UND STÜCKWEISE LINEARE EINBETTUNGEN (TOPOLOGIE DER MANNIGFALTIGKEITEN); ELLIPSOIDE (GEOMETRIE); SYMPLECTIC GEOMETRY; SMOOTH AND PIECEWISE LINEAR EMBEDDINGS (TOPOLOGY OF MANIFOLDS); ELLIPSOIDS (GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schlenk, F. (2001). Embedding problems in symplectic geometry. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/145430

Chicago Manual of Style (16th Edition):

Schlenk, Felix. “Embedding problems in symplectic geometry.” 2001. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/145430.

MLA Handbook (7th Edition):

Schlenk, Felix. “Embedding problems in symplectic geometry.” 2001. Web. 16 Apr 2021.

Vancouver:

Schlenk F. Embedding problems in symplectic geometry. [Internet] [Doctoral dissertation]. ETH Zürich; 2001. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/145430.

Council of Science Editors:

Schlenk F. Embedding problems in symplectic geometry. [Doctoral Dissertation]. ETH Zürich; 2001. Available from: http://hdl.handle.net/20.500.11850/145430


ETH Zürich

9. Wehrheim, Katrin. Anti-self-dual instantons with Lagrangian boundary conditions.

Degree: 2002, ETH Zürich

Subjects/Keywords: VIERDIMENSIONALE MANNIGFALTIGKEITEN (TOPOLOGIE); INSTANTON (THEORETISCHE PHYSIK); HOMOLOGIETHEORIE + DUALITÄTSTHEOREME (ALGEBRAISCHE TOPOLOGIE); CAUCHY-RIEMANNSCHE DIFFERENTIALGLEICHUNGEN (ANALYSIS); NORMIERTE RÄUME + BANACHRÄUME + HILBERTRÄUME (FUNKTIONALANALYSIS); FOUR-DIMENSIONAL MANIFOLDS (TOPOLOGY); INSTANTON (THEORETICAL PHYSICS); HOMOLOGY THEORY + DUALITY THEOREMS (ALGEBRAIC TOPOLOGY); CAUCHY-RIEMANN DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS); NORMED SPACES + BANACH SPACES + HILBERT SPACES (FUNCTIONAL ANALYSIS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wehrheim, K. (2002). Anti-self-dual instantons with Lagrangian boundary conditions. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/146991

Chicago Manual of Style (16th Edition):

Wehrheim, Katrin. “Anti-self-dual instantons with Lagrangian boundary conditions.” 2002. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/146991.

MLA Handbook (7th Edition):

Wehrheim, Katrin. “Anti-self-dual instantons with Lagrangian boundary conditions.” 2002. Web. 16 Apr 2021.

Vancouver:

Wehrheim K. Anti-self-dual instantons with Lagrangian boundary conditions. [Internet] [Doctoral dissertation]. ETH Zürich; 2002. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/146991.

Council of Science Editors:

Wehrheim K. Anti-self-dual instantons with Lagrangian boundary conditions. [Doctoral Dissertation]. ETH Zürich; 2002. Available from: http://hdl.handle.net/20.500.11850/146991


ETH Zürich

10. Ziltener, Fabian. Symplectic vortices on the complex plane and quantum cohomology.

Degree: 2006, ETH Zürich

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); KOMPAKTE LIE-GRUPPEN UND KOMPAKTE LIE-ALGEBREN; QUANTENKOHOMOLOGIE (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); COMPACT LIE GROUPS AND COMPACT LIE ALGEBRAS; QUANTUM COHOMOLOGY (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ziltener, F. (2006). Symplectic vortices on the complex plane and quantum cohomology. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/149209

Chicago Manual of Style (16th Edition):

Ziltener, Fabian. “Symplectic vortices on the complex plane and quantum cohomology.” 2006. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/149209.

MLA Handbook (7th Edition):

Ziltener, Fabian. “Symplectic vortices on the complex plane and quantum cohomology.” 2006. Web. 16 Apr 2021.

Vancouver:

Ziltener F. Symplectic vortices on the complex plane and quantum cohomology. [Internet] [Doctoral dissertation]. ETH Zürich; 2006. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/149209.

Council of Science Editors:

Ziltener F. Symplectic vortices on the complex plane and quantum cohomology. [Doctoral Dissertation]. ETH Zürich; 2006. Available from: http://hdl.handle.net/20.500.11850/149209


ETH Zürich

11. Ott, Andreas Michael Johannes. The non-local sympletic vortex equations and gauged Gromov-Witten invariants.

Degree: 2010, ETH Zürich

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); KOMPAKTE LIE-GRUPPEN UND KOMPAKTE LIE-ALGEBREN; GRUPPENOPERATIONEN (ALGEBRA); INVARIANTENTHEORIE (ALGEBRAISCHE GEOMETRIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); COMPACT LIE GROUPS AND COMPACT LIE ALGEBRAS; GROUP ACTIONS (ALGEBRA); INVARIANT THEORY (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ott, A. M. J. (2010). The non-local sympletic vortex equations and gauged Gromov-Witten invariants. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/152597

Chicago Manual of Style (16th Edition):

Ott, Andreas Michael Johannes. “The non-local sympletic vortex equations and gauged Gromov-Witten invariants.” 2010. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/152597.

MLA Handbook (7th Edition):

Ott, Andreas Michael Johannes. “The non-local sympletic vortex equations and gauged Gromov-Witten invariants.” 2010. Web. 16 Apr 2021.

Vancouver:

Ott AMJ. The non-local sympletic vortex equations and gauged Gromov-Witten invariants. [Internet] [Doctoral dissertation]. ETH Zürich; 2010. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/152597.

Council of Science Editors:

Ott AMJ. The non-local sympletic vortex equations and gauged Gromov-Witten invariants. [Doctoral Dissertation]. ETH Zürich; 2010. Available from: http://hdl.handle.net/20.500.11850/152597


ETH Zürich

12. Jerby, Yochai. Deformation and duality from the symplectic point of view.

Degree: 2012, ETH Zürich

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); KÄHLER-MANNIGFALTIGKEITEN (TOPOLOGIE); HOMOLOGIETHEORIE + DUALITÄTSTHEOREME (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); KÄHLER MANIFOLDS (TOPOLOGY); HOMOLOGY THEORY + DUALITY THEOREMS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jerby, Y. (2012). Deformation and duality from the symplectic point of view. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/153324

Chicago Manual of Style (16th Edition):

Jerby, Yochai. “Deformation and duality from the symplectic point of view.” 2012. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/153324.

MLA Handbook (7th Edition):

Jerby, Yochai. “Deformation and duality from the symplectic point of view.” 2012. Web. 16 Apr 2021.

Vancouver:

Jerby Y. Deformation and duality from the symplectic point of view. [Internet] [Doctoral dissertation]. ETH Zürich; 2012. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/153324.

Council of Science Editors:

Jerby Y. Deformation and duality from the symplectic point of view. [Doctoral Dissertation]. ETH Zürich; 2012. Available from: http://hdl.handle.net/20.500.11850/153324


ETH Zürich

13. Komani, Driton. Continuation maps in Morse theory.

Degree: 2012, ETH Zürich

Subjects/Keywords: MORSETHEORIE (TOPOLOGIE DER MANNIGFALTIGKEITEN); MORSE THEORY (TOPOLOGY OF MANIFOLDS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Komani, D. (2012). Continuation maps in Morse theory. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/153918

Chicago Manual of Style (16th Edition):

Komani, Driton. “Continuation maps in Morse theory.” 2012. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/153918.

MLA Handbook (7th Edition):

Komani, Driton. “Continuation maps in Morse theory.” 2012. Web. 16 Apr 2021.

Vancouver:

Komani D. Continuation maps in Morse theory. [Internet] [Doctoral dissertation]. ETH Zürich; 2012. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/153918.

Council of Science Editors:

Komani D. Continuation maps in Morse theory. [Doctoral Dissertation]. ETH Zürich; 2012. Available from: http://hdl.handle.net/20.500.11850/153918


ETH Zürich

14. Membrez, Cedric. Quantum invariants and Lagrangian topology.

Degree: 2014, ETH Zürich

Subjects/Keywords: HOMOLOGIETHEORIE + DUALITÄTSTHEOREME (ALGEBRAISCHE TOPOLOGIE); TOPOLOGIE (MATHEMATIK); TOPOLOGY (MATHEMATICS); DIFFERENTIALGEOMETRIE IN SYMPLEKTISCHEN RÄUMEN; HOMOLOGY THEORY + DUALITY THEOREMS (ALGEBRAIC TOPOLOGY); DIFFERENTIAL GEOMETRY IN SYMPLECTIC SPACES; info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Membrez, C. (2014). Quantum invariants and Lagrangian topology. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/97458

Chicago Manual of Style (16th Edition):

Membrez, Cedric. “Quantum invariants and Lagrangian topology.” 2014. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/97458.

MLA Handbook (7th Edition):

Membrez, Cedric. “Quantum invariants and Lagrangian topology.” 2014. Web. 16 Apr 2021.

Vancouver:

Membrez C. Quantum invariants and Lagrangian topology. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/97458.

Council of Science Editors:

Membrez C. Quantum invariants and Lagrangian topology. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/97458


ETH Zürich

15. Simčević, Tatjana. A Hardy Space Approach to Lagrangian Floer gluing.

Degree: 2014, ETH Zürich

Subjects/Keywords: INTERSECTION THEORY (ALGEBRAIC GEOMETRY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); SCHNITT-THEORIE (ALGEBRAISCHE GEOMETRIE); MODULI SPACES (ALGEBRAIC GEOMETRY); HARDYRÄUME + HARDYKLASSEN (FUNKTIONALANALYSIS); HARDY SPACES + HARDY CLASSES (FUNCTIONAL ANALYSIS); MODULRÄUME (ALGEBRAISCHE GEOMETRIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Simčević, T. (2014). A Hardy Space Approach to Lagrangian Floer gluing. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/91495

Chicago Manual of Style (16th Edition):

Simčević, Tatjana. “A Hardy Space Approach to Lagrangian Floer gluing.” 2014. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/91495.

MLA Handbook (7th Edition):

Simčević, Tatjana. “A Hardy Space Approach to Lagrangian Floer gluing.” 2014. Web. 16 Apr 2021.

Vancouver:

Simčević T. A Hardy Space Approach to Lagrangian Floer gluing. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/91495.

Council of Science Editors:

Simčević T. A Hardy Space Approach to Lagrangian Floer gluing. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/91495

16. Uljarevic, Igor. A symplectic homology theory for automorphisms of Liouville domains.

Degree: 2016, ETH Zürich

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Uljarevic, I. (2016). A symplectic homology theory for automorphisms of Liouville domains. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/116784

Chicago Manual of Style (16th Edition):

Uljarevic, Igor. “A symplectic homology theory for automorphisms of Liouville domains.” 2016. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/116784.

MLA Handbook (7th Edition):

Uljarevic, Igor. “A symplectic homology theory for automorphisms of Liouville domains.” 2016. Web. 16 Apr 2021.

Vancouver:

Uljarevic I. A symplectic homology theory for automorphisms of Liouville domains. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/116784.

Council of Science Editors:

Uljarevic I. A symplectic homology theory for automorphisms of Liouville domains. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/116784


ETH Zürich

17. Borer, Franziska. Weak Solutions for the Ricci Flow on Closed Surfaces and Prescribed Curvature Problems.

Degree: 2016, ETH Zürich

Subjects/Keywords: RIEMANNIAN MANIFOLDS (TOPOLOGY); KRÜMMUNGSFLUSS (DIFFERENTIALGEOMETRIE); RIEMANNSCHE MANNIGFALTIGKEITEN (TOPOLOGIE); HARMONISCHE FUNKTIONEN AUF RIEMANNSCHEN MANNIGFALTIGKEITEN (ANALYSIS); HARMONIC FUNCTIONS ON RIEMANNIAN MANIFOLDS (MATHEMATICAL ANALYSIS); CURVE SHORTENING FLOW (DIFFERENTIAL GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Borer, F. (2016). Weak Solutions for the Ricci Flow on Closed Surfaces and Prescribed Curvature Problems. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/122445

Chicago Manual of Style (16th Edition):

Borer, Franziska. “Weak Solutions for the Ricci Flow on Closed Surfaces and Prescribed Curvature Problems.” 2016. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/122445.

MLA Handbook (7th Edition):

Borer, Franziska. “Weak Solutions for the Ricci Flow on Closed Surfaces and Prescribed Curvature Problems.” 2016. Web. 16 Apr 2021.

Vancouver:

Borer F. Weak Solutions for the Ricci Flow on Closed Surfaces and Prescribed Curvature Problems. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/122445.

Council of Science Editors:

Borer F. Weak Solutions for the Ricci Flow on Closed Surfaces and Prescribed Curvature Problems. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/122445

18. Krom, Robin Sebastian. The Donaldson Geometric Flow.

Degree: 2016, ETH Zürich

Subjects/Keywords: FOUR-DIMENSIONAL MANIFOLDS (TOPOLOGY); VIERDIMENSIONALE MANNIGFALTIGKEITEN (TOPOLOGIE); SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); FLUSS (DYNAMISCHE SYSTEME); FLOW (DYNAMICAL SYSTEMS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Krom, R. S. (2016). The Donaldson Geometric Flow. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/115920

Chicago Manual of Style (16th Edition):

Krom, Robin Sebastian. “The Donaldson Geometric Flow.” 2016. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/115920.

MLA Handbook (7th Edition):

Krom, Robin Sebastian. “The Donaldson Geometric Flow.” 2016. Web. 16 Apr 2021.

Vancouver:

Krom RS. The Donaldson Geometric Flow. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/115920.

Council of Science Editors:

Krom RS. The Donaldson Geometric Flow. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/115920


ETH Zürich

19. Janner, Remi. Morse homology of the loop space on the moduli space of flat connections and Yang-Mills theory.

Degree: 2010, ETH Zürich

Subjects/Keywords: MORSETHEORIE (TOPOLOGIE DER MANNIGFALTIGKEITEN); GEODÄTISCHE FLÜSSE (DIFFERENTIALGEOMETRIE); RÄUME MIT MULTIPLIKATION (ALGEBRAISCHE TOPOLOGIE); MODULRÄUME (ALGEBRAISCHE GEOMETRIE); YANG-MILLS-GLEICHUNGEN (TOPOLOGIE DER MANNIGFALTIGKEITEN); MORSE THEORY (TOPOLOGY OF MANIFOLDS); GEODESIC FLOWS (DIFFERENTIAL GEOMETRY); SPACES WITH MULTIPLICATION (ALGEBRAIC TOPOLOGY); MODULI SPACES (ALGEBRAIC GEOMETRY); YANG-MILLS EQUATIONS (TOPOLOGY OF MANIFOLDS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Janner, R. (2010). Morse homology of the loop space on the moduli space of flat connections and Yang-Mills theory. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/152095

Chicago Manual of Style (16th Edition):

Janner, Remi. “Morse homology of the loop space on the moduli space of flat connections and Yang-Mills theory.” 2010. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/152095.

MLA Handbook (7th Edition):

Janner, Remi. “Morse homology of the loop space on the moduli space of flat connections and Yang-Mills theory.” 2010. Web. 16 Apr 2021.

Vancouver:

Janner R. Morse homology of the loop space on the moduli space of flat connections and Yang-Mills theory. [Internet] [Doctoral dissertation]. ETH Zürich; 2010. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/152095.

Council of Science Editors:

Janner R. Morse homology of the loop space on the moduli space of flat connections and Yang-Mills theory. [Doctoral Dissertation]. ETH Zürich; 2010. Available from: http://hdl.handle.net/20.500.11850/152095

20. Hensel, Felix. Stability Conditions and Lagrangian Cobordisms.

Degree: 2018, ETH Zürich

Subjects/Keywords: Symplectic geometry; Lagrangian cobordisms; info:eu-repo/classification/ddc/510; Mathematics

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hensel, F. (2018). Stability Conditions and Lagrangian Cobordisms. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/281401

Chicago Manual of Style (16th Edition):

Hensel, Felix. “Stability Conditions and Lagrangian Cobordisms.” 2018. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/281401.

MLA Handbook (7th Edition):

Hensel, Felix. “Stability Conditions and Lagrangian Cobordisms.” 2018. Web. 16 Apr 2021.

Vancouver:

Hensel F. Stability Conditions and Lagrangian Cobordisms. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/281401.

Council of Science Editors:

Hensel F. Stability Conditions and Lagrangian Cobordisms. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/281401


ETH Zürich

21. Georgoulas, Valentina Maria. A differential geometric approach to GIT and stability.

Degree: 2016, ETH Zürich

Subjects/Keywords: ALGEBRAISCHE VARIETÄTEN (PROJEKTIVE GEOMETRIE); REDUZIERBARE GRUPPEN (ALGEBRAISCHE GEOMETRIE); GRUPPENOPERATIONEN (ALGEBRA); HOLOMORPHE VEKTORBÜNDEL (ANALYTISCHE RÄUME); ALGEBRAIC VARIETIES (PROJECTIVE GEOMETRY); REDUCTIVE GROUPS (ALGEBRAIC GEOMETRY); GROUP ACTIONS (ALGEBRA); HOLOMORPHIC VECTOR BUNDLES (ANALYTIC SPACES); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Georgoulas, V. M. (2016). A differential geometric approach to GIT and stability. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/155993

Chicago Manual of Style (16th Edition):

Georgoulas, Valentina Maria. “A differential geometric approach to GIT and stability.” 2016. Doctoral Dissertation, ETH Zürich. Accessed April 16, 2021. http://hdl.handle.net/20.500.11850/155993.

MLA Handbook (7th Edition):

Georgoulas, Valentina Maria. “A differential geometric approach to GIT and stability.” 2016. Web. 16 Apr 2021.

Vancouver:

Georgoulas VM. A differential geometric approach to GIT and stability. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2021 Apr 16]. Available from: http://hdl.handle.net/20.500.11850/155993.

Council of Science Editors:

Georgoulas VM. A differential geometric approach to GIT and stability. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/155993

.