Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `+publisher:"ETH Zürich" +contributor:("Biran, Paul")`

.
Showing records 1 – 11 of
11 total matches.

▼ Search Limiters

ETH Zürich

1. Antony, Charel. Gradient Trajectories Near Real And Complex A2-singularities.

Degree: 2018, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/284182

► In this thesis, the existence and uniqueness of gradient trajectories near an A_{2}-singularity are analysed. The A_{2}-singularity is called a birth-death critical point in the…
(more)

Subjects/Keywords: Birth-death; Critical point; Gradient flow; A_2 singularity; vanishing cycles; Whitney Lemma; Adiabatic Limit; Conley Index Pair; Existence and uniqueness of solutions; info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Antony, C. (2018). Gradient Trajectories Near Real And Complex A2-singularities. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/284182

Chicago Manual of Style (16^{th} Edition):

Antony, Charel. “Gradient Trajectories Near Real And Complex A2-singularities.” 2018. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/284182.

MLA Handbook (7^{th} Edition):

Antony, Charel. “Gradient Trajectories Near Real And Complex A2-singularities.” 2018. Web. 06 May 2021.

Vancouver:

Antony C. Gradient Trajectories Near Real And Complex A2-singularities. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/284182.

Council of Science Editors:

Antony C. Gradient Trajectories Near Real And Complex A2-singularities. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/284182

2. Bisgaard, Mads R. Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory.

Degree: 2018, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/315031

Subjects/Keywords: Symplectic topology;

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bisgaard, M. R. (2018). Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/315031

Chicago Manual of Style (16^{th} Edition):

Bisgaard, Mads R. “Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory.” 2018. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/315031.

MLA Handbook (7^{th} Edition):

Bisgaard, Mads R. “Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory.” 2018. Web. 06 May 2021.

Vancouver:

Bisgaard MR. Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/315031.

Council of Science Editors:

Bisgaard MR. Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/315031

ETH Zürich

3. Haug, Luis. On Lagrangian quantum homology and Lagrangian cobordisms.

Degree: 2014, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/154582

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); LAGRANGE-MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); QUANTENKOHOMOLOGIE (ALGEBRAISCHE TOPOLOGIE); BORDISMUS + KOBORDISMUS (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); LAGRANGE MANIFOLDS (DIFFERENTIAL GEOMETRY); QUANTUM COHOMOLOGY (ALGEBRAIC TOPOLOGY); BORDISM + COBORDISM (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Haug, L. (2014). On Lagrangian quantum homology and Lagrangian cobordisms. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/154582

Chicago Manual of Style (16^{th} Edition):

Haug, Luis. “On Lagrangian quantum homology and Lagrangian cobordisms.” 2014. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/154582.

MLA Handbook (7^{th} Edition):

Haug, Luis. “On Lagrangian quantum homology and Lagrangian cobordisms.” 2014. Web. 06 May 2021.

Vancouver:

Haug L. On Lagrangian quantum homology and Lagrangian cobordisms. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/154582.

Council of Science Editors:

Haug L. On Lagrangian quantum homology and Lagrangian cobordisms. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/154582

4. Hensel, Felix. Stability Conditions and Lagrangian Cobordisms.

Degree: 2018, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/281401

Subjects/Keywords: Symplectic geometry; Lagrangian cobordisms; info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hensel, F. (2018). Stability Conditions and Lagrangian Cobordisms. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/281401

Chicago Manual of Style (16^{th} Edition):

Hensel, Felix. “Stability Conditions and Lagrangian Cobordisms.” 2018. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/281401.

MLA Handbook (7^{th} Edition):

Hensel, Felix. “Stability Conditions and Lagrangian Cobordisms.” 2018. Web. 06 May 2021.

Vancouver:

Hensel F. Stability Conditions and Lagrangian Cobordisms. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/281401.

Council of Science Editors:

Hensel F. Stability Conditions and Lagrangian Cobordisms. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/281401

ETH Zürich

5. Jerby, Yochai. Deformation and duality from the symplectic point of view.

Degree: 2012, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/153324

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); KÄHLER-MANNIGFALTIGKEITEN (TOPOLOGIE); HOMOLOGIETHEORIE + DUALITÄTSTHEOREME (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); KÄHLER MANIFOLDS (TOPOLOGY); HOMOLOGY THEORY + DUALITY THEOREMS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jerby, Y. (2012). Deformation and duality from the symplectic point of view. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/153324

Chicago Manual of Style (16^{th} Edition):

Jerby, Yochai. “Deformation and duality from the symplectic point of view.” 2012. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/153324.

MLA Handbook (7^{th} Edition):

Jerby, Yochai. “Deformation and duality from the symplectic point of view.” 2012. Web. 06 May 2021.

Vancouver:

Jerby Y. Deformation and duality from the symplectic point of view. [Internet] [Doctoral dissertation]. ETH Zürich; 2012. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/153324.

Council of Science Editors:

Jerby Y. Deformation and duality from the symplectic point of view. [Doctoral Dissertation]. ETH Zürich; 2012. Available from: http://hdl.handle.net/20.500.11850/153324

ETH Zürich

6. Membrez, Cedric. Quantum invariants and Lagrangian topology.

Degree: 2014, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/97458

Subjects/Keywords: HOMOLOGIETHEORIE + DUALITÄTSTHEOREME (ALGEBRAISCHE TOPOLOGIE); TOPOLOGIE (MATHEMATIK); TOPOLOGY (MATHEMATICS); DIFFERENTIALGEOMETRIE IN SYMPLEKTISCHEN RÄUMEN; HOMOLOGY THEORY + DUALITY THEOREMS (ALGEBRAIC TOPOLOGY); DIFFERENTIAL GEOMETRY IN SYMPLECTIC SPACES; info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Membrez, C. (2014). Quantum invariants and Lagrangian topology. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/97458

Chicago Manual of Style (16^{th} Edition):

Membrez, Cedric. “Quantum invariants and Lagrangian topology.” 2014. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/97458.

MLA Handbook (7^{th} Edition):

Membrez, Cedric. “Quantum invariants and Lagrangian topology.” 2014. Web. 06 May 2021.

Vancouver:

Membrez C. Quantum invariants and Lagrangian topology. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/97458.

Council of Science Editors:

Membrez C. Quantum invariants and Lagrangian topology. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/97458

ETH Zürich

7. Naef, Kathrin. Translated Points on Dynamically Convex Contact Manifolds.

Degree: 2018, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/263960

Subjects/Keywords: Symplectic geometry; info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Naef, K. (2018). Translated Points on Dynamically Convex Contact Manifolds. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/263960

Chicago Manual of Style (16^{th} Edition):

Naef, Kathrin. “Translated Points on Dynamically Convex Contact Manifolds.” 2018. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/263960.

MLA Handbook (7^{th} Edition):

Naef, Kathrin. “Translated Points on Dynamically Convex Contact Manifolds.” 2018. Web. 06 May 2021.

Vancouver:

Naef K. Translated Points on Dynamically Convex Contact Manifolds. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/263960.

Council of Science Editors:

Naef K. Translated Points on Dynamically Convex Contact Manifolds. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/263960

ETH Zürich

8. Simčević, Tatjana. A Hardy Space Approach to Lagrangian Floer gluing.

Degree: 2014, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/91495

Subjects/Keywords: INTERSECTION THEORY (ALGEBRAIC GEOMETRY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); SCHNITT-THEORIE (ALGEBRAISCHE GEOMETRIE); MODULI SPACES (ALGEBRAIC GEOMETRY); HARDYRÄUME + HARDYKLASSEN (FUNKTIONALANALYSIS); HARDY SPACES + HARDY CLASSES (FUNCTIONAL ANALYSIS); MODULRÄUME (ALGEBRAISCHE GEOMETRIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Simčević, T. (2014). A Hardy Space Approach to Lagrangian Floer gluing. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/91495

Chicago Manual of Style (16^{th} Edition):

Simčević, Tatjana. “A Hardy Space Approach to Lagrangian Floer gluing.” 2014. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/91495.

MLA Handbook (7^{th} Edition):

Simčević, Tatjana. “A Hardy Space Approach to Lagrangian Floer gluing.” 2014. Web. 06 May 2021.

Vancouver:

Simčević T. A Hardy Space Approach to Lagrangian Floer gluing. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/91495.

Council of Science Editors:

Simčević T. A Hardy Space Approach to Lagrangian Floer gluing. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/91495

ETH Zürich

9. Singer, Berit. Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants.

Degree: 2019, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/414580

► In this thesis we study Lagrangian cobordisms with the tools provided by Lagrangian quantum homology. In particular, we develop the theory for the setting of…
(more)

Subjects/Keywords: Symplectic topology;

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Singer, B. (2019). Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/414580

Chicago Manual of Style (16^{th} Edition):

Singer, Berit. “Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants.” 2019. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/414580.

MLA Handbook (7^{th} Edition):

Singer, Berit. “Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants.” 2019. Web. 06 May 2021.

Vancouver:

Singer B. Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants. [Internet] [Doctoral dissertation]. ETH Zürich; 2019. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/414580.

Council of Science Editors:

Singer B. Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants. [Doctoral Dissertation]. ETH Zürich; 2019. Available from: http://hdl.handle.net/20.500.11850/414580

ETH Zürich

10. Trautwein, Samuel. Infinite dimensional GIT and moment maps in differential geometry.

Degree: 2018, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/281862

► The starting point of this thesis is the following observation of Atiyah and Bott: The curvature of a connection on a bundle over a surface…
(more)

Subjects/Keywords: differential geometry; moment map; geometric invariant theory; Yang-Mills equation; vortex equation; Teichmüller theory; info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Trautwein, S. (2018). Infinite dimensional GIT and moment maps in differential geometry. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/281862

Chicago Manual of Style (16^{th} Edition):

Trautwein, Samuel. “Infinite dimensional GIT and moment maps in differential geometry.” 2018. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/281862.

MLA Handbook (7^{th} Edition):

Trautwein, Samuel. “Infinite dimensional GIT and moment maps in differential geometry.” 2018. Web. 06 May 2021.

Vancouver:

Trautwein S. Infinite dimensional GIT and moment maps in differential geometry. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/281862.

Council of Science Editors:

Trautwein S. Infinite dimensional GIT and moment maps in differential geometry. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/281862

11. Uljarevic, Igor. A symplectic homology theory for automorphisms of Liouville domains.

Degree: 2016, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/116784

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Uljarevic, I. (2016). A symplectic homology theory for automorphisms of Liouville domains. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/116784

Chicago Manual of Style (16^{th} Edition):

Uljarevic, Igor. “A symplectic homology theory for automorphisms of Liouville domains.” 2016. Doctoral Dissertation, ETH Zürich. Accessed May 06, 2021. http://hdl.handle.net/20.500.11850/116784.

MLA Handbook (7^{th} Edition):

Uljarevic, Igor. “A symplectic homology theory for automorphisms of Liouville domains.” 2016. Web. 06 May 2021.

Vancouver:

Uljarevic I. A symplectic homology theory for automorphisms of Liouville domains. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2021 May 06]. Available from: http://hdl.handle.net/20.500.11850/116784.

Council of Science Editors:

Uljarevic I. A symplectic homology theory for automorphisms of Liouville domains. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/116784