Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Language: English

You searched for +publisher:"Delft University of Technology" +contributor:("Tasoglou, Athanasios"). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Delft University of Technology

1. Katsaounis, Georgios (author). Extended Object Tracking of Pedestrians in Automotive Applications.

Degree: 2019, Delft University of Technology

Recent advances in sensor technology have lead to increased resolution of novel sensors, while tracking applications where distance between sensors and objects of interest is very small have gained research interest recently. In these cases, it is possible that multiple sensor detections are generated by each object of interest. Extended Object Tracking (EOT) approaches consist of algorithms which make use of multiple sensor detections per object to jointly estimate their kinematic and shape extent attributes within the Bayesian tracking framework. In the last decade, various EOT algorithms have been proposed for different types of tracking applications. This M.Sc. thesis project addresses the problem of extended tracking of a single pedestrian walking in the area of a stationary vehicle (referred as ego-vehicle in this report) during a real automotive scenario. The objective is to achieve accurate estimation of both the kinematic attributes (2D centroid position/velocity), as well as its shape extent in x-y plane. In more detail, PreScan software is enabled to design a simulation scenario that is very close to a real automotive application, in terms of motion characteristics of objects of interest and sensor data acquisition. In the considered scenario, different sensor modalities are mounted on the ego-vehicle, namely a Lidar sensor and a mono camera sensor. Moreover, OpenPose library is employed to to obtain pose detections of human body parts from obtained camera images. Concerning shape extent representation, the simplest and most popular approach in previous studies, in general and especially for VRUs tracking, is to assume an elliptical shape. In fact, the Random Matrix Model (RMM), proposed originally by Koch, 2008, is a state-of-the-art EOT state modeling approach that allows for joint estimation of centroid kinematics and physical extent for considered elliptical objects of interest. Based on that, a RMM-based filter using Lidar position measurements has been proposed by Feldmann, 2011. In this project, this algorithm is used as a baseline filter for comparison with our proposed algorithm. In addition, an alternative tracking algorithm is proposed in this study, which has the following differences with respect to the baseline filter: State Initialization of the filter: In our proposed version of the tracking algorithm, human pose detections of shoulders and ankles are are associated with obtained Lidar position measurements in order to provide initial values for the kinematic state (2D position/velocity) and shape parameters (ellipse orientation and semi-axes lengths) of the pedestrian.Measurement Update step of the filter: In our proposed version of the tracking algorithm, camera-obtained pose detections of pedestrian shoulders are associated with obtained Lidar position measurements in order to create an extra measurement, for pedestrian heading angle. Subsequently, a nonlinear filtering update step fusing Lidar-obtained point cloud data for pedestrian position and human-pose-obtained… Advisors/Committee Members: Alonso Mora, Javier (mentor), Domhof, Joris (mentor), Tasoglou, Athanasios (mentor), Gavrila, Dariu (graduation committee), Delft University of Technology (degree granting institution).

Subjects/Keywords: Extended Object Tracking; Vulnurable Road Users; Pedestrians; Environmental Perception; Automotive Applications; Lidar sensor; Mono camera sensor; Sensor Fusion; Random Matrix Model; Elliptical shape; OpenPose library; Human Pose Detections; position measurement; heading angle measurement; Extended Kalman Filter; Kalman Filter

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Katsaounis, G. (. (2019). Extended Object Tracking of Pedestrians in Automotive Applications. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:d7226685-9ffe-417f-9939-2167a9dfd749

Chicago Manual of Style (16th Edition):

Katsaounis, Georgios (author). “Extended Object Tracking of Pedestrians in Automotive Applications.” 2019. Masters Thesis, Delft University of Technology. Accessed February 27, 2021. http://resolver.tudelft.nl/uuid:d7226685-9ffe-417f-9939-2167a9dfd749.

MLA Handbook (7th Edition):

Katsaounis, Georgios (author). “Extended Object Tracking of Pedestrians in Automotive Applications.” 2019. Web. 27 Feb 2021.

Vancouver:

Katsaounis G(. Extended Object Tracking of Pedestrians in Automotive Applications. [Internet] [Masters thesis]. Delft University of Technology; 2019. [cited 2021 Feb 27]. Available from: http://resolver.tudelft.nl/uuid:d7226685-9ffe-417f-9939-2167a9dfd749.

Council of Science Editors:

Katsaounis G(. Extended Object Tracking of Pedestrians in Automotive Applications. [Masters Thesis]. Delft University of Technology; 2019. Available from: http://resolver.tudelft.nl/uuid:d7226685-9ffe-417f-9939-2167a9dfd749

.