Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for +publisher:"DIAL (Belgium)" +contributor:("Winkin, Joseph"). Showing records 1 – 3 of 3 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Tomanos, Dimitri. Algorithms and software for multilevel nonlinear optimization.

Degree: 2009, DIAL (Belgium)

This research concerns the algorithmic study of multilevel nonlinear optimization problems. We have developped during our thesis new methods to solve this type of problems and we analyze their convergence and numerical results. We have also implemented a soft- ware for which a complete description is given in this manuscript. A library of test problems has also been constructed on which we have tested our software. The numerical results ob- tained show that our method is clearly the best for this class of problems. The software also allowed the solution of a progressive lens industrial application that had never been solved by existing methods.

Cette recherche concerne l’étude algorithmique des problèmes d’optimisation non- linéaire multi-niveaux. Nous avons développé au cours de cette thèse de nouvelles méthodes pour la résolution de ce type de problèmes et nous analysons leur convergence et résultats numériques. Nous avons également implémenté un logiciel pour lequel une description com- plète est donnée dans ce manuscrit. Une librairie de problèmes tests a également été constru- ite sur laquelle nous avons pu tester notre logiciel. Les résultats obtenus montrent clairement que notre méthode est la meilleure pour cette classe de problèmes. Le logiciel a également permis la résolution d’une application industrielle de verres progressifs qui n’avaient pu être résolue par les méthodes existantes.

(DOCSC00 )  – FUNDP, 2009

Advisors/Committee Members: FUNDP - SMAT_Analyse Numérique, FUNDP - -, Toint, Philippe, Sartenaer, Annick, Winkin, Joseph, Gratton, Serge, Orban, Dominique.

Subjects/Keywords: Optimization; multilevel; algorithms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tomanos, D. (2009). Algorithms and software for multilevel nonlinear optimization. (Thesis). DIAL (Belgium). Retrieved from http://hdl.handle.net/2078.2/24975

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Tomanos, Dimitri. “Algorithms and software for multilevel nonlinear optimization.” 2009. Thesis, DIAL (Belgium). Accessed February 20, 2019. http://hdl.handle.net/2078.2/24975.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Tomanos, Dimitri. “Algorithms and software for multilevel nonlinear optimization.” 2009. Web. 20 Feb 2019.

Vancouver:

Tomanos D. Algorithms and software for multilevel nonlinear optimization. [Internet] [Thesis]. DIAL (Belgium); 2009. [cited 2019 Feb 20]. Available from: http://hdl.handle.net/2078.2/24975.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Tomanos D. Algorithms and software for multilevel nonlinear optimization. [Thesis]. DIAL (Belgium); 2009. Available from: http://hdl.handle.net/2078.2/24975

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

2. Beauthier, Charlotte. The LQ-Optimal Control Problem for Invariant Linear Systems.

Degree: 2011, DIAL (Belgium)

This work is concerned with the study of the linear quadratic (LQ) optimal control problem for linear systems with affine inequality constraints on the state and/or the input tra- jectories, and in particular for input/state-invariant linear systems. The study of such systems is motivated notably by the coexistence problem in a chemostat model where, for biologi- cal reasons, it is meaningful to aim at forcing the state and the input trajectories to remain in a cone. Necessary and sufficient optimality conditions are established for the input/state- invariant LQ problem by using the maximum principle with state and input constraints and by using the admissibility of the solution of the standard LQ problem. Similar and specific results are obtained for the particular LQ problem for positive systems, which are character- ized by the invariance of the nonnegative orthant of the state space. The methods developed in this thesis are applied to the chemostat model via the study of locally positively input/state- invariant nonlinear systems. The main results of this work are illustrated by some numerical examples.

Ce travail a pour objet l’étude du problème de commande optimale au sens linéaire quadratique (LQ) pour des systèmes linéaires avec contraintes d’inégalité affines sur les trajectoires d’état et/ou d’entrée, et en particulier pour des systèmes linéaires entrée/état- invariants. L’étude de ces systèmes est motivée notamment par le problème de coexistence dans un modèle de chémostat où, pour des raisons biologiques, il est important de chercher à forcer les trajectoires d’état et d’entrée de rester dans un cône. Des conditions nécessaires et suffisantes d’optimalité sont établies pour le problème LQ invariant entrée/état en utilisant le principe du maximum avec contraintes sur l’état et l’entrée et à l’aide de l’admissibilité de la solution du problème LQ standard. Des résultats similaires et spécifiques sont obtenus pour le problème LQ appliqué aux systèmes positifs, qui sont caractérisés par l’invariance de l’orthant non négatif de l’espace d’état. Les méthodes développées dans cette thèse sont appliquées au modèle de chémostat via l’étude des systèmes non linéaires localement entrée/état-invariants. Les principaux résultats de ce travail sont illustrés par des exemples numériques.

(DOCSC00)  – FUNDP, 2011

Advisors/Committee Members: FUNDP - SMAT_Contrôle et optimisation, FUNDP - -, Winkin, Joseph, Callier, Frank, Sartenaer, Annick, Dochain, Denis, Iacoviello, Daniela.

Subjects/Keywords: linear quadratic (LQ) problem; optimal control; invariant systems; positive linear systems; dynamical systems; state constraints; input constraints; chemostat; coexistence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Beauthier, C. (2011). The LQ-Optimal Control Problem for Invariant Linear Systems. (Thesis). DIAL (Belgium). Retrieved from http://hdl.handle.net/2078.2/76840

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Beauthier, Charlotte. “The LQ-Optimal Control Problem for Invariant Linear Systems.” 2011. Thesis, DIAL (Belgium). Accessed February 20, 2019. http://hdl.handle.net/2078.2/76840.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Beauthier, Charlotte. “The LQ-Optimal Control Problem for Invariant Linear Systems.” 2011. Web. 20 Feb 2019.

Vancouver:

Beauthier C. The LQ-Optimal Control Problem for Invariant Linear Systems. [Internet] [Thesis]. DIAL (Belgium); 2011. [cited 2019 Feb 20]. Available from: http://hdl.handle.net/2078.2/76840.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Beauthier C. The LQ-Optimal Control Problem for Invariant Linear Systems. [Thesis]. DIAL (Belgium); 2011. Available from: http://hdl.handle.net/2078.2/76840

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Boreux, Jehan. Control theory of area preserving maps - Application to particle accelerator systems.

Degree: 2013, DIAL (Belgium)

Particle accelerators are technological devices which allow studies at both infinitely small scale, e.g. particles responsible for elementary forces, and extremely large scale, e.g. the origin of cosmos. This work is concerned with area-preserving maps modelling ring accelerators. We prove a theorem on control allowing us to build two new maps. These systems exhibit excellent dynamical properties : wider dynamical aperture, reduction of chaos and a reduced frequency space. The results have a strong analitical basis and are validated numerically with the normal form theory (NF), the chaos indicator SALI and the frequency map analysis (FMA). Finally we present a very new direction in the control of dynamical systems : controlling dissipative systems that are perturbations of integrable ones. We give a detailed presentation of the first theoretical and numerical results through the van der Pol model.

(DOCSC00)  – FUNDP, 2013

Advisors/Committee Members: FUNDP - SMAT_Systèmes dynamiques, FUNDP - Ecole doctorale en sciences, Carletti, Timoteo, Winkin, Joseph, Lemaitre, Anne, Vittot, Michel, Fanelli, Duccio.

Subjects/Keywords: control maps accelerator hamiltonian area preserving

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Boreux, J. (2013). Control theory of area preserving maps - Application to particle accelerator systems. (Thesis). DIAL (Belgium). Retrieved from http://hdl.handle.net/2078.2/134980

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Boreux, Jehan. “Control theory of area preserving maps - Application to particle accelerator systems.” 2013. Thesis, DIAL (Belgium). Accessed February 20, 2019. http://hdl.handle.net/2078.2/134980.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Boreux, Jehan. “Control theory of area preserving maps - Application to particle accelerator systems.” 2013. Web. 20 Feb 2019.

Vancouver:

Boreux J. Control theory of area preserving maps - Application to particle accelerator systems. [Internet] [Thesis]. DIAL (Belgium); 2013. [cited 2019 Feb 20]. Available from: http://hdl.handle.net/2078.2/134980.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Boreux J. Control theory of area preserving maps - Application to particle accelerator systems. [Thesis]. DIAL (Belgium); 2013. Available from: http://hdl.handle.net/2078.2/134980

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.